

# Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment

**Prepared for:** 

Waratah Coal Pty Ltd

# October 2019

# Final

## Prepared by:

Katestone Environmental Pty Ltd ABN 92 097 270 276 Ground Floor, 16 Marie Street | PO Box 2217 Milton, Brisbane, Queensland, 4064, Australia www.katestone.global

admin@katestone.com.au Ph +61 7 3369 3699



| Document Control    |                                                                                 |
|---------------------|---------------------------------------------------------------------------------|
| Deliverable #:      | D18047-5                                                                        |
| Title:              | Galilee Power Project – Monklands: Air Quality and Greenhouse Gas<br>Assessment |
| Version:            | 1.0 (Final)                                                                     |
| Client:             | Waratah Coal Pty Ltd                                                            |
| Document reference: | D18047-5 Waratah Coal Galilee Power Project Monklands - AQFINAL.docx            |
| Prepared by:        | Natalie Shaw, Lisa Smith, Manning Young                                         |
| Reviewed by:        | Simon Welchman                                                                  |
| Approved by:        | S. Well                                                                         |
|                     | Simon Welchman                                                                  |
|                     | 31/10/2019                                                                      |

#### Disclaimer

https://katestone.global/report-disclaimer/

#### Copyright

This document, electronic files or software are the copyright property of Katestone Environmental Pty. Ltd. and the information contained therein is solely for the use of the authorised recipient and may not be used, copied or reproduced in whole or part for any purpose without the prior written authority of Katestone Environmental Pty. Ltd. Katestone Environmental Pty. Ltd. makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document, electronic files or software or the information contained therein.

© Copyright Katestone Environmental Pty. Ltd.

# Contents

| Executi | ve Sumn    | mary                                                                | vii         |
|---------|------------|---------------------------------------------------------------------|-------------|
| 1.      | Introdu    | uction                                                              | 1           |
| 2.      | Scope      | of work                                                             | 5           |
| 3.      | Leaislat   | tive framework for air auality                                      | 6           |
| 4       | Existina   | a environment                                                       | 8           |
|         | 4 1        | Local terrain and land-use                                          | 8           |
|         | 4.2        |                                                                     | ۰<br>ع      |
|         | 4.2        | Existing air quality                                                |             |
|         | 4.0        | 4.3.1 Existing sources of emissions                                 |             |
|         |            | 4.3.1 Existing ambient air quality                                  |             |
| 5       | Air aug    | 4.5.2 Existing an bien an abadalagy                                 | ∠۱۱۷<br>۱ ۸ |
| 5.      |            |                                                                     |             |
|         | 5.1<br>5.0 | Emission rates                                                      | 14          |
|         | 5.Z        |                                                                     | 14          |
|         | 5.3        | Dispersion modelling.                                               | 14          |
|         | 5.4        | Methods for the conversion of NO <sub>X</sub> to NO <sub>2</sub>    | 15          |
|         | 5.5        | Ambient background levels                                           | 15          |
|         | 5.6        | Cumulative impacts                                                  | 15          |
|         | 5./        | Presentation of results                                             | 15          |
|         | 5.8        |                                                                     | 16          |
|         | 5.9        | Limitations of dispersion modelling                                 | 16          |
| 6.      | Emissio    | ns to the atmosphere                                                | 17          |
|         | 6.1        | Standards of emission concentrations                                | 17          |
|         | 6.2        | Construction                                                        | 17          |
|         | 6.3        | Operations – 1400 MW (2x700MW) coal fired power station             | 18          |
|         | 6.4        | Operations – ash storage facility                                   | 19          |
| 7.      | Meteor     | rology                                                              |             |
|         | 7.1        | Wind speed and wind direction                                       | 20          |
|         | 7.2        | Temperature                                                         | 22          |
|         | 7.3        | Atmospheric stability                                               | 23          |
|         | 7.4        | Mixing height                                                       | 25          |
| 8.      | Air qua    | ality assessment results                                            |             |
|         | 8.1        | Construction                                                        | 26          |
|         | 8.2        | Operation - 1,400 MW (2 x 700 MW)                                   | 26          |
|         | 8.3        | Bimblebox Nature Refuge                                             | 30          |
|         | 8.4        | Ozone                                                               |             |
|         | 8.5        | Cumulative impact assessment – other proposed and approved projects |             |
| 9.      | Greenh     | house gas assessment                                                |             |
|         | 9.1        | Background                                                          |             |
|         | 9.2        | Regulatory Framework for Greenhouse Gas Emissions                   |             |
|         |            | 9.2.1 National policy                                               |             |
|         |            | 9.2.2 National Greenhouse and Energy Reporting (NGER)               |             |
|         | 9.3        | Methodology                                                         |             |
|         |            | 9.3.1 Emissions                                                     |             |
|         |            | 9.3.2 Emissions estimation                                          |             |
|         | 9.4        | Results                                                             | 40          |
|         |            | 9.4.1 GHG emissions and energy use summary                          | 40          |
|         |            | 9.4.2 Regulatory obligations – NGER and the safequard mechanism     |             |
|         |            | 9.4.3 GHG emissions intensity                                       | 43          |
|         |            | 9.4.4 GHG mitigation and management                                 |             |
| 10.     | Conclu     | isions                                                              | 46          |
| 11      | Referen    | nces                                                                | 0+<br>71    |
| 11.     |            |                                                                     |             |
| Append  | aix A      | Meteorological and alspersion modelling methodology                 |             |
|         | AI         | IAPM meteorology                                                    |             |
|         |            | A I.I CALMEI meteorological modelling                               | 90          |

**Katestone Environmental Pty Ltd** D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

| A2         | CALPUFF dispersion modelling | 91 |
|------------|------------------------------|----|
| Appendix B | Discrete receptor results    | 92 |
| Appendix C | Cumulative assessment        | 22 |

# **Tables**

| Table 1  | Ambient air quality objectives (Air EPP except where noted)                                                                                                    | 7                |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Table 2  | Nearest sensitive receptors to the Project                                                                                                                     | 9                |
| Table 3  | Barcaldine Power Station - National Pollutant Inventory emissions for the 2017-2018 reporting                                                                  | ng period<br>12  |
| Table 4  | Concentrations of nitrogen dioxide measured at Pimlico monitoring station 2011 - 2015                                                                          |                  |
| Table 5  | Concentrations of sulfur dioxide measured at Pimlico monitoring station 2011 - 2015                                                                            | 13               |
| Table 6  | Concentrations of PM <sub>10</sub> measured at Pimlico monitoring station 2011 - 2015                                                                          | 13               |
| Table 7  | Ambient background concentrations for use in the assessment                                                                                                    | 15               |
| Table 8  | NSW stack emissions concentration limits for coal-fired power plant associated with electr<br>generation                                                       | icity<br>17      |
| Table 9  | Stack characteristics and emissions data for diesel generators used in construction                                                                            |                  |
| Table 10 | Stack characteristics and emissions data for the 1,400 MW (2 x 700 MW) coal fired power s                                                                      | station18        |
| Table 11 | Frequency distribution of surface atmospheric stability conditions at the Project Site                                                                         | 23               |
| Table 12 | Construction - Predicted ground-level concentrations of NO <sub>2</sub> , SO <sub>2</sub> , PM <sub>10</sub> and PM <sub>2.5</sub> due to a                    | diesel           |
|          | generators in isolation and with ambient background                                                                                                            | 26               |
| Table 13 | 1,400 MW - Predicted ground-level concentrations of NO <sub>2</sub> and SO <sub>2</sub> due to Project in isolati with ambient background                      | ion and<br>28    |
| Table 14 | 1,400 MW - Predicted ground-level concentrations of PM <sub>10</sub> and PM <sub>2.5</sub> due to Project in isolowith ambient background                      | ation and<br>28  |
| Table 15 | 1,400 MW - Predicted ground-level concentrations of metals due to Project in isolation                                                                         | 29               |
| Table 16 | Predicted ground-level concentrations of NO $_2$ and SO $_2$ due to Project in isolation and with                                                              | n ambient        |
|          | background at the Bimblebox Nature Refuge                                                                                                                      | 30               |
| Table 17 | Predicted ground-level concentrations of fluoride due to Project in isolation at the Bimble<br>Refuge                                                          | box Nature<br>30 |
| Table 18 | Predicted cumulative 24-hour average ground-level concentrations of PM <sub>10</sub> , including the (1,400 MW), approved mines and ambient background levels  | • Project<br>32  |
| Table 19 | Predicted cumulative 24-hour average ground-level concentrations of PM <sub>2.5</sub> , including the (1,400 MW), approved mines and ambient background levels | e Project<br>33  |
| Table 20 | Predicted cumulative annual average ground-level concentrations of PM <sub>2.5</sub> , including the (1,400 MW), approved mines and ambient background levels  | Project          |
| Table 21 | NGER annual reporting thresholds – greenhouse gas emissions and energy use                                                                                     |                  |
| Table 22 | Emission factors and energy content for GHG emission sources                                                                                                   |                  |
| Table 23 | Average coal properties                                                                                                                                        | 40               |
| Table 24 | Emission source summary                                                                                                                                        | 41               |
| Table 25 | GHG emissions summary                                                                                                                                          | 41               |
| Table 26 | Energy consumption summary                                                                                                                                     | 42               |
| Table 27 | GHG emissions and energy use summary                                                                                                                           | 43               |
|          |                                                                                                                                                                |                  |
| Table B1 | 1,400 MW – Predicted maximum 1-hour concentrations of NO <sub>2</sub> due to Project in isolation of background                                                | nd with          |
|          |                                                                                                                                                                | 7/               |

|          | packground                                                                                         |   |
|----------|----------------------------------------------------------------------------------------------------|---|
| Table B2 | 1,400 MW – Predicted annual average ground-level concentrations of NO2 due to Project in isolation | ۱ |
|          | and with background94                                                                              |   |
| Table B3 | 1,400 MW – Predicted maximum 1-hour average ground-level concentrations of $SO_2$ due to Project   |   |
|          | in isolation and with background96                                                                 |   |
| Table B4 | 1,400 MW – Predicted maximum 24-hour average ground-level concentrations of $SO_2$ due to Project  |   |
|          | in isolation and with background                                                                   |   |
| Table B5 | 1,400 MW – Predicted annual average ground-level concentrations of SO2 due to Project in isolation | I |
|          | and with background100                                                                             |   |
| Table B6 | 1,400 MW – Predicted maximum 24-hour average ground-level concentrations of $PM_{10}$ due to       |   |
|          | Project in isolation and with background103                                                        |   |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

| Table B7  | 1,400 MW – Predicted maximum 24-hour average ground-level concentrations of $PM_{2.5}$ due to   |
|-----------|-------------------------------------------------------------------------------------------------|
|           | Project in isolation and with background105                                                     |
| Table B8  | 1,400 MW – Predicted annual average ground-level concentrations of $PM_{2.5}$ due to Project in |
|           | isolation and with background107                                                                |
| Table B9  | 1,400 MW – Predicted annual average ground-level concentrations of arsenic due to Project in    |
|           | isolation                                                                                       |
| Table B10 | 1,400 MW – Predicted 1-hour and annual average ground-level concentrations of boron due to      |
|           | Project in isolation111                                                                         |
| Table B11 | 1,400 MW – Predicted annual average ground-level concentrations of cadmium due to Project in    |
|           | isolation                                                                                       |
| Table B12 | 1,400 MW – Predicted annual average ground-level concentrations of lead due to Project in       |
|           | isolation                                                                                       |
| Table B13 | 1,400 MW – Predicted 1-hour and annual average ground-level concentrations of mercury due to    |
|           | Project in isolation118                                                                         |
|           |                                                                                                 |

| Table C1 | Predicted ground-level concentrations of PM10 and PM2.5 at sensitive receptors (adapted | from Table |
|----------|-----------------------------------------------------------------------------------------|------------|
|          | 2.13 Pacific Environment Limited, July 2013)                                            | 122        |
| Table C2 | Predicted ground-level concentrations of PM10 and PM2.5 at sensitive receptors (adapted | from Table |
|          | 12 and Figures 12 to 15, Noise Mapping Australia, February 2012)                        |            |

# Figures

| Figure 1  | Galilee Power Station Project location2                                                             |
|-----------|-----------------------------------------------------------------------------------------------------|
| Figure 2  | Galilee Power Station site layout                                                                   |
| Figure 3  | Galilee Power Station plant layout4                                                                 |
| Figure 4  | Terrain surrounding the Project                                                                     |
| Figure 5  | Location of sensitive receptors                                                                     |
| Figure 6  | Annual distribution of the TAPM/CALMET generated winds for the Project site                         |
| Figure 7  | Seasonal distribution of the TAPM/CALMET generated winds for the Project site                       |
| Figure 8  | Diurnal distribution of the TAPM/CALMET generated winds for the Project site                        |
| Figure 9  | Hourly distribution of TAPM/CALMET predicted temperature at the Project site                        |
| Figure 10 | Monthly distribution of TAPM/CALMET predicted temperature at the Project site                       |
| Figure 11 | Proportion of stability class predicted at the Project site by hour of day                          |
| Figure 12 | Box and whisker plot of mixing height data extracted from CALMET at the Project site by hour of day |
|           |                                                                                                     |
| Figure 13 | Mining leases for approved mines in the vicinity of the Project                                     |
| Figure 14 | GHG emissions intensity of electricity from coal fired power stations in Australia (CER, 2018)44    |

# **Contour Plates**

| Plate 1 | Construction – Diesel Generators – Predicted maximum 1-hour average ground-level concentrations           |
|---------|-----------------------------------------------------------------------------------------------------------|
|         | of NO $_2$ due to the Project including ambient background48                                              |
| Plate 2 | Construction – Diesel Generators – Predicted annual average ground-level concentrations of NO2            |
|         | due to the Project including ambient background49                                                         |
| Plate 3 | 1,400 MW – Overload – Predicted maximum 1-hour average ground-level concentrations of $NO_2$              |
|         | due to the Project including ambient background50                                                         |
| Plate 4 | 1,400 MW – 100% load – Predicted maximum 1-hour average ground-level concentrations of $NO_2$             |
|         | due to the Project including ambient background51                                                         |
| Plate 5 | 1,400 MW – 60% load – Predicted maximum 1-hour average ground-level concentrations of NO $_2$ due         |
|         | to the Project including ambient background52                                                             |
| Plate 6 | 1,400 MW – 25% – load - Predicted maximum 1-hour average ground-level concentrations of NO $_2$           |
|         | due to the Project including ambient background53                                                         |
| Plate 7 | 1,400 MW – Overload – Predicted annual average ground-level concentrations of NO $_2$ due to the          |
|         | Project including ambient background54                                                                    |
| Plate 8 | 1,400 MW – 100% load – Predicted annual average ground-level concentrations of NO <sub>2</sub> due to the |
|         | Project including ambient background55                                                                    |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

31 October 2019 Page iii

| Plate 9  | 1,400 MW – 60% load – Predicted annual average ground-level concentrations of NO $_2$ due to the             |
|----------|--------------------------------------------------------------------------------------------------------------|
|          | Project including ambient background56                                                                       |
| Plate 10 | 1,400 MW – 25% load – Predicted annual average ground-level concentrations of NO $_2$ due to the             |
|          | Project including ambient background57                                                                       |
| Plate 11 | 1,400 MW – Overload – Predicted maximum 1-hour average ground-level concentrations of SO <sub>2</sub> due    |
|          | to the Project including ambient background                                                                  |
| Plate 12 | 1,400 MW – 100% load – Predicted maximum 1-hour average ground-level concentrations of $SO_2$                |
|          | due to the Project including ambient background                                                              |
| Plate 13 | 1,400 MW – $60\%$ load – Predicted maximum 1-hour average ground-level concentrations of SO <sub>2</sub> due |
|          | to the Project including ambient background                                                                  |
| Plate 14 | 1,400 MW – 25% load – Predicted maximum 1-hour average ground-level concentrations of SO <sub>2</sub> due    |
|          | to the Project including ambient background                                                                  |
| Plate 15 | 1,400  MW - Overload - Predicted maximum  24-hour average ground-level concentrations of SO2                 |
|          | due to the Project including ambient background                                                              |
| Plate 16 | 1.400 MW – 100% load – Predicted maximum 24-hour average ground-level concentrations of SO2                  |
|          | due to the Project including ambient background                                                              |
| Plate 17 | 1.400 MW – $60\%$ load – Predicted maximum 24-hour average around-level concentrations of $SO_2$             |
|          | due to the Project including ambient background                                                              |
| Plate 18 | 1 400 MW – 25% load – Predicted maximum 24-hour average around-level concentrations of SO2                   |
|          | due to the Project including ambient background                                                              |
| Plate 19 | 1.400 MW – Overload – Predicted annual average ground-level concentrations of SO2 due to the                 |
|          | Project including ambient background                                                                         |
| Plate 20 | 1.400  MW = 100% load – Predicted appual average around-level concentrations of SO <sub>2</sub> due to the   |
|          | Project including ambient background                                                                         |
| Plate 21 | 1.400 MW - 40% load - Predicted applied average ground-level concentrations of SO <sub>2</sub> due to the    |
|          | Project including ambient background                                                                         |
| Plata 22 | 1.400 MW 257 load Prodicted appud average ground lovel concentrations of SO2 due to the                      |
| FIGIE 22 | Project including ambient background                                                                         |
| Diata 02 | 1 400 MMV Overlaged Bradieted maximum 24 hour average ground level concentrations of BM                      |
| FIGIE 25 | 1,400 MW - Overload - Fredicied maximum 24-hour average ground-level concentrations of FM10                  |
| Dista 04 | aue to the Project including ambient background                                                              |
| Plate 24 | 1,400 MW – 100% load – Predicted maximum 24-nour average ground-level concentrations of PM10                 |
| Dista OF | aue to the Project including ambient background                                                              |
| Plate 25 | 1,400 MW – 60% load – Predicted maximum 24-nour average ground-level concentrations of PM <sub>10</sub>      |
| Dista 0/ | due to the Project including ambient background                                                              |
| Plate 26 | 1,400 MW – 25% load – Predicted maximum 24-nour average ground-level concentrations of PM <sub>10</sub>      |
|          | aue to the Project including ambient background                                                              |
| Plate 27 | 1,400 MW – Overload – Predicted maximum 24-nour average ground-level concentrations of PM <sub>2.5</sub>     |
|          | due to the Project including ambient background                                                              |
| Plate 28 | 1,400 MW – 100% load – Predicted maximum 24-hour average ground-level concentrations of PM <sub>2.5</sub>    |
|          | due to the Project including ambient background                                                              |
| Plate 29 | 1,400 MW – 60% load – Predicted maximum 24-hour average ground-level concentrations of $PM_{2.5}$            |
|          | due to the Project including ambient background                                                              |
| Plate 30 | 1,400 MW – 25% load – Predicted maximum 24-hour average ground-level concentrations of $PM_{2.5}$            |
|          | due to the Project including ambient background77                                                            |
| Plate 31 | 1,400 MW – Overload – Predicted annual average ground-level concentrations of $PM_{2.5}$ due to the          |
|          | Project including ambient background78                                                                       |
| Plate 32 | 1,400 MW – 100% load – Predicted annual average ground-level concentrations of PM <sub>2.5</sub> due to the  |
|          | Project including ambient background                                                                         |
| Plate 33 | 1,400 MW – 60% load – Predicted annual average ground-level concentrations of $PM_{2.5}$ due to the          |
|          | Project including ambient background80                                                                       |
| Plate 34 | 1,400 MW – 25% load – Predicted annual average ground-level concentrations of $PM_{2.5}$ due to the          |
|          | Project including ambient background                                                                         |
| Plate 35 | 1,400 MW – Overload – Predicted maximum 30-day average ground-level concentrations of fluoride               |
|          | due to the Project                                                                                           |
| Plate 36 | 1,400 MW – 100% load – Predicted maximum 30-day average ground-level concentrations of                       |
|          | fluoride due to the Project                                                                                  |
| Plate 37 | 1,400 MW – 60% load – Predicted maximum 30-day average ground-level concentrations of fluoride               |
|          | due to the Project                                                                                           |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

| Plate 38 | 1,400 MW – 25% load – Predicted maximum 30-day average ground-level concentrations of fluoride |
|----------|------------------------------------------------------------------------------------------------|
|          | due to the Project                                                                             |
| Plate 39 | 1,400 MW – Overload – Predicted maximum 90-day average ground-level concentrations of fluoride |
|          | due to the Project                                                                             |
| Plate 40 | 1,400 MW – 100% load – Predicted maximum 90-day average ground-level concentrations of         |
|          | fluoride due to the Project                                                                    |
| Plate 41 | 1,400 MW – 60% load – Predicted maximum 90-day average ground-level concentrations of fluoride |
|          | due to the Project                                                                             |
| Plate 42 | 1,400 MW – 25% load – Predicted maximum 90-day average ground-level concentrations of fluoride |
|          | due to the Project                                                                             |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

# Glossary

| Term                   | Definition                                                          |
|------------------------|---------------------------------------------------------------------|
| %                      | percent                                                             |
| µg/m³                  | micrograms per cubic metre                                          |
| μm                     | microns                                                             |
| °C                     | degrees Celsius                                                     |
| g/s                    | gram per second                                                     |
| Gj                     | gigajoules                                                          |
| kg/annum               | kilogram per annum                                                  |
| km                     | kilometre                                                           |
| ktCO <sub>2</sub> -e/y | kilotonnes of carbon dioxide equivalents per year                   |
| KV                     | Kilovolt                                                            |
| m                      | metre                                                               |
| m/s                    | metres per second                                                   |
| m³/s                   | cubic metres per second                                             |
| m <sup>3</sup> /hour   | cubic metres per hour                                               |
| mg/Nm <sup>3</sup>     | milligrams per normal cubic metre                                   |
| MW                     | megawatt                                                            |
| MWh/y                  | megawatt hours per year                                             |
| Nm <sup>3</sup> /s     | normal cubic metre per second                                       |
| TJ/y                   | terajoules per year                                                 |
| Nomenclature           | Definition                                                          |
| CO                     | carbon monoxide                                                     |
| CO <sub>2</sub>        | carbon dioxide                                                      |
| NO                     | nitric oxide                                                        |
| NO <sub>2</sub>        | nitrogen dioxide                                                    |
| NO <sub>X</sub>        | oxides of nitrogen                                                  |
| PM <sub>10</sub>       | particulate matter with aerodynamic diameter of 10 $\mu m$ or less  |
| PM <sub>2.5</sub>      | particulate matter with aerodynamic diameter of 2.5 $\mu m$ or less |
| SO <sub>2</sub>        | sulfur dioxide                                                      |
| Abbreviations          | Definition                                                          |
| EP Act                 | Environmental Protection Act 1994                                   |
| Air EPP                | Environmental Protection (Air) Policy 2008                          |
| DES                    | Department of Environment and Science                               |
| GHG                    | greenhouse gas                                                      |
| NGER                   | National Greenhouse and Energy Reporting                            |
| NGER Act               | National Greenhouse and Energy Reporting Act 2007                   |
| NPI                    | National Pollutant Inventory database                               |
| TAPM                   | The Air Pollution Model                                             |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

# **EXECUTIVE SUMMARY**

Katestone Environmental Pty Ltd (Katestone) was commissioned by Waratah Coal Pty Ltd (Waratah) to complete an Air Quality Assessment of the Galilee Power Station Project (the Project). The Galilee Power Station Project is a proposed coal fired power station located 32 kilometres northwest of Alpha and adjacent to Waratah Coal's Galilee Coal Project in Central Queensland. The assessment is to support a Material Change of Use application for the Project.

The Project involves the construction and operation of a coal fired power station in Central Queensland. Waratah proposes to develop the coal fired power station in conjunction with mining operations. The ultimate capacity of the power station is 1,400 MW (comprised of 2 x 700 MW units).

The air quality assessment has used a dispersion modelling approach. A site-specific meteorological data file has been generated using the TAPM and CALMET meteorological models. The meteorological modelling has accounted for local terrain and land use features of the surrounding region.

Emission rates and stack characteristics have been determined from the manufacturer's specifications, emission limits, and emissions information provided by Waratah. The CALPUFF dispersion model has been used to predict ground-level concentrations of nitrogen dioxide (NO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), particulates (PM<sub>10</sub> and PM<sub>2.5</sub>) and metals that will be generated by the Project. The results of the dispersion modelling have then been assessed against the relevant air quality criteria for the protection of human health and the environment.

Four load scenarios have been considered covering the full range of operations in order to ensure that worstcase potential impacts have been determine, namely:

- Overload operation
- 100% operation
- 60% operation
- 25% operation.

Diesel generators will be utilised during construction, these have also been assessed.

The air quality assessment shows that:

- Construction predicted ground-level concentrations of NO<sub>2</sub>, SO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> comply with the air quality objectives at all sensitive receptors.
- Operations
  - Predicted ground-level concentrations of NO<sub>2</sub>, SO<sub>2</sub>, PM<sub>10</sub>, PM<sub>2.5</sub> and metals at sensitive receptors *comply* with the air quality objectives at all sensitive residential receptors.
  - Predicted ground-level concentrations of NO<sub>2</sub>, SO<sub>2</sub> and fluoride at sensitive environmental receptors *comply* with the air quality objectives.

The potential for cumulative dust impacts was assessed and it was concluded that the Project's contribution to any cumulative dust impacts would be minor relative to contributions from the adjacent open cut mines.

The assessment of the GHG and energy use associated with the Project shows that:

• GHG and energy use associated with the construction activities range from 1 to 7 ktCO<sub>2</sub>-e/y and 10 to 100 TJ/y, respectively.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

31 October 2019 Page vii

- Ongoing operation of the Project is expected to result in 9,427 ktCO<sub>2</sub>-e/y for the 1,400 MW configuration.
- The Project has the potential to achieve a significantly lower GHG emissions intensity, 0.79-0.81 kgCO<sub>2</sub>-e/kWh in comparison to other coal fired power stations. If the power station, operating at 1,400 MW, displaced electricity production from older less efficient coal fired power stations, GHG emissions at a national level could theoretically be reduced by as much as 5,500 ktCO<sub>2</sub>-e annually.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

31 October 2019 Page viii

# 1. INTRODUCTION

Katestone Environmental Pty Ltd (Katestone) was commissioned by Waratah Coal Pty Ltd (Waratah) to complete an air quality and greenhouse gas assessment of the Galilee Power Station Project (the Project). The assessment is to support a Material Change of Use application for the Project.

The Project involves the construction and operation of a coal fired power station in Central Queensland. The Project site is located 32 kilometres northwest of Alpha (Figure 1) and adjacent to Waratah's approved Galilee Coal Project. Waratah proposes to develop the coal fired power station in conjunction with mining operations. The ultimate capacity of the power station is 1,400 MW (comprised of 2 x 700 MW units).

The coal handling infrastructure and mine infrastructure area will be located within the approved Galilee Coal Project's mine lease boundary. Coal will be transported from the mine to the Project by conveyor. Infrastructure located within the Project's boundary (Figure 2 and Figure 3) includes:

- The portion of the conveyor that lies within the Project boundary
- Steam boilers and turbines
- Stores hardstand area
- Raw water dams
- Furnace ash cooling ponds
- Ash storage facility
- Administration building
- 275 and 132 kV Power lines.

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

# GALILEE POWER STATION PROJECT CONCEPT DESIGN

144-2-GA-DWG-0001





#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final





#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final





#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

# 2. SCOPE OF WORK

This assessment summarises the aspects of the Project that may result in emissions to the atmosphere, as well as the legislation, policies and guidelines that are relevant to the assessment and management of air emissions in Queensland and Australia.

The key air pollutants that may be emitted to the atmosphere by the Project are oxides of nitrogen (NO<sub>x</sub>), carbon dioxide (CO<sub>2</sub>) and sulfur dioxide (SO<sub>2</sub>). Particulates in the form of  $PM_{10}$  and  $PM_{2.5}$ , and metals, may also be present at trace levels.

Emissions will occur due to the combustion of the coal in the coal fired boilers as well as the combustion of diesel in the diesel generators during construction. Dispersion modelling has been conducted to estimate ground-level concentrations of air pollutants associated with the Project for assessment against amenity and health objectives.

A cumulative impact assessment of the Project has been conducted that accounts for natural and existing and approved future anthropogenic sources of air pollutants.

The assessment has considered the potential impacts from:

- Construction diesel-fired generators and earthworks
- Operations coal-fired power station with a total capacity of 1,400 MW operating at four different load scenarios (overload, 100% load, 60% load and 25% load)
- Operations ash storage facility
- The Project plus ambient background.

There are a number of projects that are approved, or well progressed in the approval process, that have not yet been constructed and so the measured background dust levels do not capture the influence of the projects. Where possible, the potential for cumulative effects of these future projects has been explicitly considered.

A greenhouse gas (GHG) assessment has also been conducted to quantify emissions of  $CO_2$  and other GHGs. The GHG assessment includes a discussion of the relevant legislation, the methodology for the assessment, the estimated GHG emissions and proposed mitigation strategies.

Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

# 3. LEGISLATIVE FRAMEWORK FOR AIR QUALITY

The *Environmental Protection Act 1994* (EP Act) provides for the management of the air environment in Queensland. The EP Act gives the Department of Environment and Science (DES) the power to create Environmental Protection Policies that identify, and aim to protect, environmental values of the atmosphere that are conducive to the health and well-being of humans and biological integrity. The *Environmental Protection (Air) Policy* (Air EPP) was made under the EP Act and gazetted in 1997; the Air EPP was revised and reissued in 2008.

The purpose of the Air EPP is to identify the environmental values of the air environment to be enhanced or protected and to achieve the objective of the EP Act, which is ecologically sustainable development.

The environmental values to be enhanced or protected under the Air EPP are the qualities of the environment that are conducive to:

- protecting health and biodiversity of ecosystems;
- human health and wellbeing;
- protecting the aesthetics of the environment, including the appearance of building structures and other property; and
- protecting agricultural use of the environment.

The administering authority must consider the requirements of the Air EPP when it decides an application for an environmental authority, amendment of a licence or approval of a draft environmental management plan. Schedule 1 of the Air EPP specifies air quality indicators and objectives for contaminants that may be present in the air environment.

The Air EPP air quality objectives relevant to the key air pollutants that may be generated from the Project are presented in Table 1.

Not all air pollutants that are generated by a coal fired power station are indicators under the Air EPP. It is common practice to consider, and where appropriate adopt, impact assessment criterion for air quality indicators from another jurisdiction if an objective is not defined in the Air EPP. Accordingly, impact assessment criteria from the following guidelines and standards have been adopted:

- Texas Commission on Environmental Quality Effects Screening Levels 2009 (TCEQ, 2009)
- Approved methods for the modelling and assessment of air pollutants in NSW (NSW EPA, 2017).

Also relevant is DES's *Application requirements for activities with impacts to air*, which outlines the information to be provided to DES as part of the application process for environmentally relevant activities and how the information is used. This document outlines how the proposed activity will be assessed by comparison with the requirements stipulated in the EP Act. In particular, this requires an application to include, if applicable:

- description of the site and surrounding areas, including topography, prevailing winds and ambient air quality (Section 4 and 7)
- identification of any nearby sensitive places must be identified and assessed appropriately (Section 4.2)
- identification and evaluation of possible impacts on air quality (Section 8)
- Proposed management (Section 6.2 and 6.4).

This air quality assessment has been conducted in accordance with these requirements.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

| Pollutant                                    | Environmental value                                                        | Averaging period    | Air quality<br>objective<br>(μg/m <sup>3</sup> ) | Number of days<br>of exceedance<br>allowed per year |
|----------------------------------------------|----------------------------------------------------------------------------|---------------------|--------------------------------------------------|-----------------------------------------------------|
|                                              |                                                                            | 1-hour              | 250                                              | 1                                                   |
| NO <sub>2</sub>                              | Health and wellbeing                                                       | 1-year              | 62                                               | N/A                                                 |
|                                              | Health and biodiversity of ecosystems                                      | 1-year              | 33                                               | N/A                                                 |
|                                              |                                                                            | 1-hour              | 570                                              | 1                                                   |
|                                              | Health and wellbeing                                                       | 24-hour             | 230                                              | 1                                                   |
| SO <sub>2</sub>                              |                                                                            | 1-year              | 57                                               | N/A                                                 |
| 002                                          | Protecting agriculture                                                     | 1-year              | 32                                               | N/A                                                 |
|                                              | Health and biodiversity of ecosystems (for forests and natural vegetation) | 1-year              | 22                                               | N/A                                                 |
| PM10                                         | Health and wellbeing                                                       | 24-hour             | 50                                               | 5                                                   |
| DM                                           |                                                                            | 24-hour             | 25                                               | N/A                                                 |
| PIVI2.5                                      | Health and wellbeing                                                       | 1-year              | 8                                                | N/A                                                 |
| Arsenic                                      | Health and wellbeing                                                       | 1-year              | 0.006                                            | N/A                                                 |
| Deren                                        | Health and wellbeing                                                       | 1-hour <sup>a</sup> | 50                                               | N/A                                                 |
| Boron                                        | Health and wellbeing                                                       | Annual <sup>a</sup> | 5                                                | N/A                                                 |
| Cadmium                                      | Health and wellbeing                                                       | 1-year              | 0.005                                            | N/A                                                 |
| Fluoride                                     | Health and biodiversity of ecosystems (for protected areas)                | 90-days             | 0.1                                              | N/A                                                 |
| Lead                                         | Health and wellbeing                                                       | 1-year              | 0.5                                              | N/A                                                 |
| Mercury and<br>compounds<br>(organic)        | Health and wellbeing                                                       | 1-hour <sup>b</sup> | 0.18                                             | N/A                                                 |
| Mercury and<br>compounds<br>(inorganic)      | Health and wellbeing                                                       | 1-hour <sup>b</sup> | 1.8                                              | N/A                                                 |
| Table note:<br><sup>a</sup> Effects screenin | g level from TCEQ 2009                                                     |                     |                                                  |                                                     |

#### Table 1 Ambient air quality objectives (Air EPP except where noted)

<sup>b</sup> Impact assessment criterion from NSW EPA 2017

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

# 4. EXISTING ENVIRONMENT

#### 4.1 Local terrain and land-use

The Project is located 32 kilometres northwest of Alpha. The site is located approximately 360m above sea level. It is bordered to the west by the Great Dividing Range, which rises up to an elevation of 500m. Directly north of the site is the Bimblebox Nature Refuge.

The land use in the area is mostly low-density grazing; however, four mining projects, namely: Alpha Coal Project, Galilee Coal Project, South Galilee Coal Mine and Kevin's Corner Project have been approved but are yet to be constructed.



Figure 4 Terrain surrounding the Project

### 4.2 Sensitive receptors

The sensitive receptors surrounding the Project are presented in Table 2 and Figure 5. The Bimblebox Nature Refuge is approximately 6km to the southwest of the Project site. The Workers' Camp for the Galilee Coal Mine is located 4-5km to the southeast of the Project site.

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

| Receptor<br>ID | Description                                           | Туре                    | Easting<br>(m) | Northing<br>(m) | Distance<br>from Project<br>site (km) |
|----------------|-------------------------------------------------------|-------------------------|----------------|-----------------|---------------------------------------|
| 0              | Dwelling                                              | Dwelling                | 458326         | 7374080         | 39.9                                  |
| 1              | Dwelling                                              | Dwelling                | 414236         | 7389710         | 42.3                                  |
| 2              | Dwelling                                              | Dwelling                | 476354         | 7444400         | 41.2                                  |
| 5              | Accommodation Village -<br>Alpha Coal Project         | Dwelling                | 455990         | 7435050         | 22.9                                  |
| 6              | Accommodation Village -<br>South Galilee Coal Project | Dwelling                | 453070         | 7381710         | 31.5                                  |
| 7              | Airfield                                              | Commercial / Industrial | 411564         | 7391610         | 43.6                                  |
| 8              | Alpha                                                 | Township                | 463044         | 7384650         | 31.4                                  |
| 9              | Alpha Coal Bulk Sample                                | Commercial / Industrial | 446310         | 7430760         | 18.0                                  |
| 10             | Beaufort Homestead                                    | Dwelling                | 482196         | 7393550         | 38.0                                  |
| 11             | Bedford Homestead                                     | Dwelling                | 461878         | 7385550         | 30.1                                  |
| 12             | Betanga Homestead                                     | Dwelling                | 433061         | 7386390         | 31.4                                  |
| 13             | Blairgowrie                                           | Dwelling                | 404511         | 7447130         | 56.5                                  |
| 14             | Bonanza Homestead                                     | Dwelling                | 459400         | 7378880         | 35.6                                  |
| 16             | Burgoyne Homestead                                    | Dwelling                | 413173         | 7383660         | 46.8                                  |
| 17             | Burtle Homestead                                      | Dwelling                | 464077         | 7429860         | 22.2                                  |
| 18             | Carinya Homestead                                     | Dwelling                | 483295         | 7398380         | 36.8                                  |
| 19             | Cavendish Homestead <sup>a</sup>                      | Dwelling                | 427242         | 7408510         | 22.8                                  |
| 20             | Colorado Homestead                                    | Dwelling                | 425690         | 7386800         | 35.5                                  |
| 21             | Corn Top Homestead <sup>a</sup>                       | Dwelling                | 433454         | 7387990         | 29.8                                  |
| 22             | Creek Farm Homestead                                  | Dwelling                | 457196         | 7378510         | 35.4                                  |
| 25             | Dwelling                                              | Dwelling                | 414157         | 7387740         | 43.5                                  |
| 26             | Dwelling                                              | Dwelling                | 412328         | 7389130         | 44.3                                  |
| 27             | Dwelling                                              | Dwelling                | 412984         | 7390100         | 43.2                                  |
| 28             | Dwelling                                              | Dwelling                | 415413         | 7380810         | 47.0                                  |
| 29             | Dwelling                                              | Dwelling                | 404063         | 7391130         | 50.5                                  |
| 30             | Dwelling                                              | Dwelling                | 415318         | 7377350         | 49.5                                  |
| 31             | Dwelling                                              | Dwelling                | 407550         | 7388490         | 48.7                                  |
| 32             | Dwelling                                              | Dwelling                | 461709         | 7384490         | 31.0                                  |
| 33             | Dwelling                                              | Dwelling                | 461561         | 7384020         | 31.4                                  |
| 34             | Dwelling                                              | Dwelling                | 466912         | 7382620         | 35.0                                  |
| 35             | Dwelling                                              | Dwelling                | 467480         | 7383290         | 34.7                                  |
| 36             | Dwelling                                              | Dwelling                | 468324         | 7384040         | 34.5                                  |
| 37             | Dwelling                                              | Dwelling                | 469001         | 7389630         | 30.4                                  |
| 38             | Dwelling?                                             | Dwelling                | 468208         | 7391030         | 28.8                                  |
| 39             | Edwinstowe Homestead                                  | Dwelling                | 400899         | 7407010         | 49.0                                  |
| 40             | Elphin Homestead                                      | Dwelling                | 467229         | 7378740         | 38.6                                  |
| 41             | Eulimbie Homestead                                    | Dwelling                | 464125         | 7453600         | 43.1                                  |
| 42             | Eureka Homestead                                      | Dwelling                | 440787         | 7390590         | 24.1                                  |

#### Table 2 Nearest sensitive receptors to the Project

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

| Receptor<br>ID | Description                               | Туре                    | Easting<br>(m) | Northing<br>(m) | Distance<br>from Project<br>site (km) |
|----------------|-------------------------------------------|-------------------------|----------------|-----------------|---------------------------------------|
| 44             | Gadwell Homestead                         | Dwelling                | 462438         | 7404300         | 15.6                                  |
| 46             | Glen Innes Homestead <sup>a</sup>         | Dwelling                | 438839         | 7407510         | 12.1                                  |
| 47             | Hazelbrook Homestead                      | Dwelling                | 466198         | 7383890         | 33.6                                  |
| 49             | Hobartville Homestead <sup>b</sup>        | Dwelling                | 449599         | 7422950         | 9.9                                   |
| 50             | Inverurie Homestead                       | Dwelling                | 410026         | 7401940         | 41.1                                  |
| 51             | Islay Plains Homestead                    | Dwelling                | 487557         | 7433370         | 43.1                                  |
| 52             | Jericho                                   | Township                | 410870         | 7389550         | 45.3                                  |
| 53             | Jordan Avon Homestead                     | Dwelling                | 409351         | 7397260         | 43.2                                  |
| 54             | Kalbar Homestead                          | Dwelling                | 480097         | 7406610         | 31.2                                  |
| 55             | Kerand Homestead                          | Dwelling                | 486074         | 7406330         | 37.1                                  |
| 56             | Kia Ora Homestead <sup>a</sup>            | Dwelling                | 437910         | 7414870         | 11.8                                  |
| 57             | Lambton Meadows<br>Homestead <sup>a</sup> | Dwelling                | 431528         | 7398980         | 22.9                                  |
| 59             | Locharnoch                                | Dwelling                | 411166         | 7421840         | 39.4                                  |
| 60             | Melton Homestead                          | Dwelling                | 481860         | 7396990         | 36.1                                  |
| 61             | Mentmore Homestead                        | Dwelling                | 460741         | 7408730         | 12.0                                  |
| 62             | Milangavla                                | Shed/Structure          | 420443         | 7412890         | 29.1                                  |
| 63             | Monklands <sup>a</sup>                    | Dwelling                | 445187         | 7411120         | 4.8                                   |
| 64             | Moonstone Homestead                       | Dwelling                | 474988         | 7432010         | 31.7                                  |
| 65             | Mossvale Homestead                        | Dwelling                | 464819         | 7389860         | 27.8                                  |
| 67             | Oakleigh Homestead                        | Dwelling                | 453342         | 7390950         | 22.4                                  |
| 68             | Quarry                                    | Commercial / Industrial | 410757         | 7390910         | 44.7                                  |
| 69             | Racecourse                                | Commercial / Industrial | 411723         | 7390270         | 44.2                                  |
| 70             | Racecourse                                | Commercial / Industrial | 460399         | 7384860         | 30.2                                  |
| 71             | Rifle Creek Homestead                     | Dwelling                | 494263         | 7413440         | 51.8                                  |
| 72             | Rosedale Homestead                        | Dwelling                | 403774         | 7437190         | 34.1                                  |
| 73             | Rosefield Homestead                       | Dwelling                | 419542         | 7396960         | 11.8                                  |
| 74             | Salt Bush Homestead                       | Dwelling                | 454102         | 7402200         | 53.0                                  |
| 76             | Spring Creek <sup>a</sup>                 | Dwelling                | 429260         | 7415010         | 20.4                                  |
| 79             | Surbiton Homestead                        | Dwelling                | 460914         | 7440140         | 29.4                                  |
| 81             | The Grove Homestead                       | Dwelling                | 465831         | 7392660         | 46.4                                  |
| 82             | Toarbee                                   | Dwelling                | 425281         | 7387680         | 26.1                                  |
| 84             | Tressillian Homestead                     | Dwelling                | 462377         | 7416370         | 35.1                                  |
| 85             | Villafield Homestead                      | Dwelling                | 458425         | 7381570         | 13.2                                  |
| 86             | Wendouree Homestead <sup>b</sup>          | Dwelling                | 448337         | 7437070         | 32.7                                  |
| 87             | Woodbrook Homestead                       | Dwelling                | 488114         | 7416410         | 24.1                                  |
| 88             | Wycheproof Homestead                      | Dwelling                | 485017         | 7387530         | 38.7                                  |
| 89             | Zeta Homestead                            | Dwelling                | 471664         | 7371980         | 43.7                                  |
| -              | Workers' Camp                             | Dwelling                | 451754         | 7408992         | 39.9                                  |

Table note:

<sup>a</sup> Receptor to be acquired by Waratah

<sup>b</sup> Receptor to be acquired by Alpha Coal

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final



Figure 5 Location of sensitive receptors

## 4.3 Existing air quality

#### 4.3.1 Existing sources of emissions

The existing air quality in the study area will be influenced by natural sources such as wind erosion and fires, and local agriculture or horticulture. Several mines in addition to the Waratah Coal Mine, namely: Alpha Coal, Kevin's Corner and South Galilee Coal Project have been approved. However, these mines are yet to be constructed.

The National Pollutant Inventory identifies the Barcaldine Power Station, located 114km to the west of the Project site, as the closest significant emitter of air pollutants. Emissions from the Barcaldine Power Station are summarised in Table 3.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

# Table 3Barcaldine Power Station - National Pollutant Inventory emissions for the 2017-2018<br/>reporting period

| Parameter                 | Value                  |
|---------------------------|------------------------|
| Distance                  | 114 km                 |
| Description/ ANZSIC Class | Electricity Generation |
| NOx                       | 470 kg/annum           |
| SO <sub>2</sub>           | 2.8 kg/annum           |
| PM <sub>10</sub>          | 36 kg/annum            |
| PM <sub>2.5</sub>         | 36 kg/annum            |
| Arsenic                   | 0.00094 kg/annum       |
| Cadmium                   | 0.0051 kg/annum        |
| Fluoride                  | 0 kg/annum             |
| Lead & compounds          | 0.0027 kg/annum        |
| Mercury & compounds       | 0.0012 kg/annum        |

### 4.3.2 Existing ambient air quality

DES operates a network of ambient air quality monitoring stations throughout Queensland. Data recorded in the five years from 2011 to 2015 at the nearest monitoring station, located at Pimlico, has been analysed. This monitoring station was decommissioned in late 2016 and replaced by a monitoring station in North Ward in late 2017. Low data capture rates occurred in these years and, consequently, data from these years have not been included in the following data summary.

Ambient concentrations of NO<sub>2</sub>, SO<sub>2</sub> and PM<sub>10</sub> measured at Pimlico are presented in Table 4, Table 5 and Table 6, respectively. Ambient background levels of air pollutants are lower than the relevant Air EPP objectives with the exception a period of elevated concentrations of  $PM_{10}$  that were measured in 2011 due to a bushfire and backburning operations.

|      |                | Nitrogen dic                | oxide (µg/m³)               |                |
|------|----------------|-----------------------------|-----------------------------|----------------|
| Year | 1-hour average |                             |                             | A              |
|      | Maximum        | 95 <sup>th</sup> percentile | 70 <sup>th</sup> percentile | Annual average |
| 2011 | 84.2           | 34.9                        | 12.3                        | 10.7           |
| 2012 | 69.8           | 28.7                        | 10.3                        | 9.9            |
| 2013 | 67.7           | 22.6                        | 8.2                         | 7.3            |
| 2014 | 63.6           | 26.7                        | 8.2                         | 8.4            |
| 2015 | 80.1           | 26.7                        | 8.2                         | 7.7            |

# Table 4 Concentrations of nitrogen dioxide measured at Pimlico monitoring station 2011 - 2015

Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

#### Table 5 Concentrations of sulfur dioxide measured at Pimlico monitoring station 2011 -2015

|      |                |                                | Sulfur                         | dioxide (µg/n   | n³)                            |                                |         |
|------|----------------|--------------------------------|--------------------------------|-----------------|--------------------------------|--------------------------------|---------|
| Year | 1-hour average |                                |                                | 24-hour average |                                |                                |         |
| Tear | Maximum        | 95 <sup>th</sup><br>percentile | 70 <sup>th</sup><br>percentile | Maximum         | 95 <sup>th</sup><br>percentile | 70 <sup>th</sup><br>percentile | average |
| 2011 | 25.7           | 11.4                           | 5.7                            | 17.1            | 11.4                           | 5.7                            | 3.6     |
| 2012 | 17.1           | 5.7                            | 2.9                            | 8.6             | 5.7                            | 2.9                            | 1.6     |
| 2013 | 11.4           | 2.9                            | 2.9                            | 5.7             | 2.9                            | 2.9                            | 1.1     |
| 2014 | 14.3           | 5.7                            | 2.9                            | 5.7             | 2.9                            | 2.9                            | 1.8     |
| 2015 | 11.4           | 5.7                            | 2.9                            | 8.6             | 2.9                            | 2.9                            | 1.8     |

#### Table 6

## Concentrations of $\text{PM}_{10}$ measured at Pimlico monitoring station 2011 - 2015

|      |                 | PM10 (                      | μg/m³)                      |                |
|------|-----------------|-----------------------------|-----------------------------|----------------|
| Year | 24-hour average |                             |                             | Annual average |
|      | Maximum         | 95 <sup>th</sup> percentile | 70 <sup>th</sup> percentile | Annual average |
| 2011 | 64.9            | 27.5                        | 17.6                        | 15.6           |
| 2012 | 30.0            | 21.4                        | 14.9                        | 12.9           |
| 2013 | 27.6            | 24.3                        | 17.5                        | 15.0           |
| 2014 | 29.4            | 22.5                        | 17.0                        | 15.1           |
| 2015 | 42.0            | 27.0                        | 20.1                        | 17.7           |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment - Final

# 5. AIR QUALITY ASSESSMENT METHODOLOGY

This air quality assessment was conducted in accordance with standard techniques for dispersion modelling and emission estimation that are recognised by DES. The air quality assessment is based on a dispersion modelling study that incorporates source characteristics and air pollution emission rates, local meteorology, terrain, land use and the geographical location of sensitive receivers.

#### 5.1 Emission rates

Emission rates of NO<sub>2</sub>, SO<sub>2</sub>,  $PM_{10}$  and  $PM_{2.5}$  and metals from the coal fired boilers were provided by Waratah for the 1,400 MW capacity power station. Emission rates were provided for four different load scenarios namely: overload, 100%, 60% and 25% load.

Emissions of NO<sub>2</sub>, SO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> for the diesel generators used during construction were calculated using diesel fuel consumption data provided by Waratah and emission factors provided in the National Pollutant Inventory Emission Estimation Technique Handbook for combustion engines.

Section 6 provides a comprehensive discussion of emissions included in the assessment.

### 5.2 Meteorology

Site-specific meteorological data was generated by coupling the prognostic model TAPM (version 4.0.5) (The Air Pollution Model) with the diagnostic meteorological model CALMET (version 6.5.0). The coupled TAPM/CALMET modelling system was developed to enable high resolution modelling capabilities for regulatory and environmental assessments. The modelling system incorporates synoptic, mesoscale and local atmospheric conditions, detailed topographic and land use categorisation schemes to simulate synoptic and regional scale meteorology for input into pollutant dispersion models such as CALPUFF.

The assessment was conducted using the most recent versions of TAPM and CALMET available at the time of undertaking the study.

A summary of meteorology for the site is provided in Section 7. Technical details of the configuration of the TAPM and CALMET models are discussed in Appendix A.

### 5.3 Dispersion modelling

The CALPUFF model (version 7.2.1) was used for dispersion modelling. CALPUFF is an advanced non-steadystate air quality modelling system. Twelve months of modelled meteorological data was used as input for the dispersion model in order to include all weather conditions likely to be experienced in the region during a typical year. The modelling has been used to predict ground-level concentrations of air pollutants across a Cartesian grid and at the locations of the nearest sensitive receptors.

Emission sources were configured in CALPUFF using stack characteristics provided by Waratah. Air pollutant emission rates have been modelled over a full year assuming constant emissions from the power station and the diesel-fired generators.

Details of model configuration are provided in Appendix A.

Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

## 5.4 Methods for the conversion of NO<sub>X</sub> to NO<sub>2</sub>

Nitric oxide (NO) that is emitted by power stations can undergo chemical transformation in the atmosphere to form nitrogen dioxide (NO<sub>2</sub>). NO<sub>2</sub> is more toxic than NO and therefore it is important to quantify the transformation of NO to NO<sub>2</sub> in the atmosphere. Measurements around power stations in Central Queensland show, under worst possible cases, a conversion of 25-40% of the nitric oxide to nitrogen dioxide occurs within the first 10 kilometres of plume travel. During days with elevated background levels of hydrocarbons (generally originating from bushfires, hazard reduction burning or other similar activities), the resulting conversion is usually below 50% in the first 30 kilometres of plume travel (Bofinger et. al., 1986). For this air dispersion modelling assessment, a ratio of 30% conversion of the oxides of nitrogen to nitrogen dioxide has been assumed. This is highly conservative considering the short travel time of the plume to the maximum ground-level concentrations.

## 5.5 Ambient background levels

The assessment has considered background levels of air pollutants in the region. Table 7 presents the ambient background concentrations selected for this assessment.

| Pollutant         | Averaging period | Ambient background concentration (µg/m <sup>3</sup> ) | Source                                                                                                             |
|-------------------|------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| NO <sub>2</sub>   | 1-hour           | 34.9                                                  | Highest 70 <sup>th</sup> percentile from Pimlico between 2011 and 2015                                             |
|                   | 1-year           | 10.7                                                  | Highest annual average from Pimlico between 2011 and 2015                                                          |
| SO <sub>2</sub>   | 1-hour           | 11.4                                                  | Highest 70 <sup>th</sup> percentile from Pimlico between 2011 and 2015                                             |
|                   | 24-hour          | 5.7                                                   | Highest 70 <sup>th</sup> percentile from Pimlico between 2011 and 2015                                             |
|                   | 1-year           | 3.6                                                   | Highest annual average from Pimlico between 2011 and 2015                                                          |
| PM <sub>10</sub>  | 24-hour          | 20.4                                                  | Highest 70 <sup>th</sup> percentile from Pimlico between 2011 and 2015                                             |
| PM <sub>2.5</sub> | 24-hour          | 5.0                                                   | Calculated from 24-hour $PM_{10}$ from Pimlico using ratio of $PM_{2.5}$ to $PM_{10}$ of 0.25                      |
|                   | 1-year           | 4.4                                                   | Calculated from average PM <sub>10</sub> from Pimlico using ratio of PM <sub>2.5</sub> to PM <sub>10</sub> of 0.25 |

 Table 7
 Ambient background concentrations for use in the assessment

### 5.6 Cumulative Impacts

There are a number of proposed and/or approved mines in the vicinity of the Project that are not yet constructed. The potential for cumulative impacts due the Project operating at the same time as these mines has also been assessed using data contained in the respective Environmental Impact Assessments. The contribution of these mines to ground-level concentrations of air pollutants is discussed in Section 8.5.

## 5.7 Presentation of results

The results of dispersion modelling have been presented as ground-level concentrations at sensitive receptors as well as contours across the modelling domain for the key pollutants: NO<sub>2</sub>, SO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub>.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

The maximum predicted concentrations at any sensitive receptor are presented in Section 8.1 for construction activities. The maximum predicted concentrations at any sensitive receptor are presented in Section 8.2 for the four operational loads investigated. The predicted maximum concentrations of key pollutants for each sensitive receptor, including the Workers' Camp, are presented in Appendix B.

The maximum predicted concentrations relating to the Bimblebox Nature Refuge are presented in Section 8.3.

## 5.8 Photochemical smog

Photochemical smog (ozone) is not directly released from the Project as a primary pollutant rather it is generated through photochemical oxidation of  $NO_X$  and nitrates in the atmosphere over time. The exhaust from the Project contains approximately 90-95% of oxides of nitrogen as NO. Once this NO has been transformed into  $NO_2$  and nitrates, ozone may be produced via a multi-stage process. The rate at which photochemical smog is generated is a function of:

- The in-plume concentration of oxides of nitrogen
- The concentration and reactivity of volatile organic compounds in the ambient air
- The rate of plume dispersion
- The prevailing atmospheric conditions, including temperature and solar radiation fluxes.

The transformation of NO<sub>X</sub> and possible formation of ozone involves a number of chemical reactions. Generally, during the first phase of chemical transformations, the mixing of the exhaust plume with ambient air results in a local reduction of ambient ozone, through titration of the emitted NO as it reacts with ozone to form NO<sub>2</sub>. The second phase (ozone generation) will commence only if the ambient air is sufficiently photochemically aged (i.e. reactions have reached an equilibrium where no more NO<sub>2</sub> is produced). This phase continues with ozone being both generated and diluted in the plume. The generation continues until the final phase, the NO<sub>X</sub>-limited state, is reached in the plume. The duration of each phase will depend on the nature of the ambient air, the emission rates and characteristics of the industrial source and the dispersion rates.

The assessment has assumed that each mole of NO<sub>x</sub> predicted at ground-level at a distance of ten kilometres from the power station will result in the maximum stoichiometric amount of ozone generation possible. This assessment is conservative as it assumes that the phases described above coincide to provide maximum conversion of NO<sub>x</sub> to ozone.

### 5.9 Limitations of dispersion modelling

This study necessarily relies on the accuracy of a number of data sets including, but not limited to:

- Meteorological information
- Analysis and representativeness of coal samples
- Fuel consumption data.

Where uncertainty exists in important properties of the proposed activities within the Project or the environment, this assessment has erred on the side of caution and selected inputs that would provide for overestimates of ground-level concentrations of air pollutants. A number of assumptions have been applied.

It is important to note that numerical models are based on an approximation of governing equations and will inherently be associated with some degree of uncertainty. The more complex the physical model, the greater the number of physical processes that must be included.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

# 6. EMISSIONS TO THE ATMOSPHERE

## 6.1 Standards of emission concentrations

There is no legislation or regulation in force in Queensland that specifies emission concentration standards; however, DES commonly considers the emission standards set in other jurisdictions. In NSW, the *Protection of the Environment Operations (Clean Air) Regulation 2010* provides standards of emission concentrations for premises that are required to be licensed. The standards for boilers associated with electricity generating systems with a capacity of greater than 30 MW are presented in Table 8. Plant and equipment that are proposed for the Project will comply with these standards of concentration.

# Table 8 NSW stack emissions concentration limits for coal-fired power plant associated with electricity generation

| Air impurity                                                                                          | Activity or plant                                                                                                                                                                                                | Standard of concentration |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Nitrogen dioxide (NO <sub>2</sub> ) or<br>nitric oxide (NO) or both, as<br>NO <sub>2</sub> equivalent | Any boiler operating on a fuel other than gas, including a boiler<br>used in connection with an electricity generator that forms part<br>of an electricity generating system with a capacity of 30 MW or<br>more | 500 mg/Nm³                |
| Solid particles (total)                                                                               | Any activity or plant using a liquid or solid standard fuel or a non-standard fuel                                                                                                                               | 50 mg/Nm <sup>3</sup>     |
| Table note:<br>Reference conditions: Dry, 273                                                         | 3 K, 101.3 kPa, 7% oxygen content                                                                                                                                                                                |                           |

## 6.2 Construction

The construction phase of the Project is expected to take three years. Construction phase activities include:

- Site clearance of areas, including vegetation clearance, topsoil removal and storage, and earthworks
- Civil works including temporary and permanent drainage works
- Structure and plant erection and installation
- Commissioning and testing of plant and equipment
- Diesel generators for the provision of power
- Construction site demobilisation.

Dust emissions during the construction phase of the Project will be managed through the implementation of a dust management plan. Measures to minimise dust may include:

- Watering of roads
- Minimising exposed areas as far as practicable
- Limiting vehicle speeds.

The construction phase of the Project is necessarily temporary.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

A combination of 100 kW, 200 kW and 500 kW diesel generators will be required throughout the construction period. The number of generators will depend on the construction activities likely to occur within a given period.

Emissions from the diesel generators have been quantified based on diesel usage data provided by Waratah and emission factors contained in the NPI Emission Estimation Technique Manual for Combustion Engines Version 3.0. The stack characteristics and emission rates associated with the operation of the diesel generators during construction are summarised in Table 9.

| Parameter                             | Units                   | 100 kW | 200 kW  | 500 kW |
|---------------------------------------|-------------------------|--------|---------|--------|
| Number of generators                  | -                       | 8      | 1       | 4      |
| Fuel usage <sup>1</sup> per generator | m³/hour                 | 0.042  | 0.017   | 0.008  |
| Stack height <sup>2</sup>             | m                       | 3      | 3       | 3      |
| Stack diameter <sup>3</sup>           | m                       | 0.25   | 0.25    | 0.25   |
| Exit velocity <sup>3</sup>            | m/s                     | 25     | 25      | 25     |
| Exit temperature <sup>3</sup>         | °C                      | 464    | 464     | 464    |
| Emission rates (total                 | for each type of genera | ator)  |         |        |
| NOx emission rate                     | g/s                     | 1.3    | 0.3     | 2.4    |
| SOx emission rate                     | g/s                     | 0.0003 | 0.00008 | 0.0008 |
| PM <sub>10</sub> emission rate        | g/s                     | 0.09   | 0.02    | 0.08   |
| PM <sub>2.5</sub> emission rate       | g/s                     | 0.09   | 0.02    | 0.07   |

| Table 9 | Stack characteristics and emissions data for diesel generators used in construction |
|---------|-------------------------------------------------------------------------------------|
|---------|-------------------------------------------------------------------------------------|

Table notes:

<sup>1</sup> Fuel usage based on maximum consumption for any 3-month period during construction phase. Hourly usage based on 10-hour operation, 78 days per quarter.

<sup>2</sup> Stack height supplied by Waratah

<sup>3</sup> Stack diameter, exit velocity and temperature based on generator specifications for generators with capacities similar to above.

### 6.3 Operations – 1400 MW (2x700MW) coal fired power station

The stack characteristics and emission rates for the coal fired power station with a generating capacity 1,400 MW are presented in Table 10. Waratah Coal will install scrubber technology to minimise emissions of SO<sub>2</sub>. Stack characteristics and emission rates are presented for four load scenarios with scrubber technology installed. The load scenarios relate to the coal fired power station operating at overload, 100% load, 60% load and 25% load.

| Table 10 | Stack characteristics and emissions data for the 1,400 MW (2 x 700 MW) coal fired |
|----------|-----------------------------------------------------------------------------------|
|          | power station                                                                     |

| Parameter                               | Units | Overload | 100% load | 60% load | 25 % load |  |
|-----------------------------------------|-------|----------|-----------|----------|-----------|--|
| Power generated                         | MW    | 756      | 702       | 421      | 176       |  |
| Stack height                            | m     | 100      | 100       | 100      | 100       |  |
| Stack diameter (effective) <sup>1</sup> | m     | 9.9      | 9.9       | 9.9      | 9.9       |  |
| Exit velocity                           | m/s   | 23       | 19        | 12       | 6         |  |
| Exit temperature                        | °C    | 120      | 120       | 120      | 120       |  |
| Stack exhaust moisture content          | %     | 6.7      | 6.7       | 6.7      | 6.7       |  |

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

| Parameter                                | Units              | Overload | 100% load | 60% load | 25 % load |  |  |
|------------------------------------------|--------------------|----------|-----------|----------|-----------|--|--|
| Stack exhaust oxygen content - wet       | %                  | 3.3      | 3.3       | 3.3      | 3.3       |  |  |
| Normalised volume flow - wet             | Nm <sup>3</sup> /s | 1208     | 1042      | 651      | 326       |  |  |
| Normalised volume flow – dry, 15% O2     | Nm <sup>3</sup> /s | 3943     | 3402      | 2126     | 1063      |  |  |
| NOx concentration (15% O <sub>2</sub> )  | mg/Nm <sup>3</sup> | 200      | 200       | 200      | 200       |  |  |
| PM <sub>10</sub> concentration           | mg/Nm <sup>3</sup> | 50       | 50        | 50       | 50        |  |  |
| Emission rates (total for power station) |                    |          |           |          |           |  |  |
| NOx emission rate                        | g/s                | 789      | 680       | 425      | 213       |  |  |
| SOx emission rate                        | g/s                | 100      | 87        | 54       | 27        |  |  |
| PM <sub>10</sub> emission rate           | g/s                | 197      | 170       | 106      | 53        |  |  |
| PM <sub>2.5</sub> emission rate          | g/s                | 197      | 170       | 106      | 53        |  |  |
| Arsenic emission rate                    | g/s                | 8.1E-04  | 7.0E-04   | 4.4E-04  | 2.2E-04   |  |  |
| Boron emission rate                      | g/s                | 3.7E-02  | 3.2E-02   | 2.0E-02  | 1.0E-02   |  |  |
| Cadmium emission rate                    | g/s                | 2.2E-05  | 1.9E-05   | 1.2E-05  | 6.1E-06   |  |  |
| Fluorine emission rate                   | g/s                | 2.8E-02  | 2.4E-02   | 1.5E-02  | 7.5E-03   |  |  |
| Mercury emission rate                    | g/s                | 1.7E-05  | 1.5E-05   | 9.1E-06  | 4.5E-06   |  |  |
| Lead emission rate                       | g/s                | 6.8E-03  | 5.9E-03   | 3.7E-03  | 1.8E-03   |  |  |
| Selenium emission rate                   | g/s                | 9.6E-04  | 8.3E-04   | 5.2E-04  | 2.6E-04   |  |  |
| Table notes:                             |                    |          |           |          |           |  |  |

<sup>1</sup> The two power station stacks were modelled as a single stack with an effective diameter

#### 6.4 **Operations – ash storage facility**

The ash storage facility will be developed progressively as new storage capacity is required.

The ash from the power station will be piped or trucked or conveyed to the ash storage cells. The ash will be of a wet consistency and will be progressively rehabilitated and therefore is not expected to be a major source of dust.

A dust management plan will be implemented to minimise dust from the ash storage cells. Measures to minimise dust may include:

- Progressive rehabilitation
- Addition of water
- Establishing wind breaks such as bunding as required. •

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd - Galilee Power Project - Monklands: Air Quality and Greenhouse Gas Assessment - Final

# 7. METEOROLOGY

The following sections describe the meteorology of the region surrounding the Project, focussing on parameters that are important for dispersion of air pollutants, based on data generated for the 2012 calendar year by the TAPM/CALMET models. The summary includes a description of the predicted wind speed, wind direction, temperature, atmospheric stability and mixing height. The dataset has been extracted from the model at the Project site.

## 7.1 Wind speed and wind direction

The annual, seasonal and diurnal distribution of winds predicted by TAPM/CALMET for the Project site are presented in Figure 6, Figure 7 and Figure 8, respectively. The analysis of the wind speed and wind direction at the site shows that winds are predominantly light to moderate between 1 and 6 m/s. Winds are also predominantly from the north-northeast through to the south, with very few winds predicted to occur from the southwest and northwest sectors.

Seasonal trends show predominant north-easterly sector winds during the spring and summer months that shift to the southeast through to south-southwest during the winter months. Autumn winds show the transition between the predominant summer and winter winds, with autumn winds predominantly from the east-northeast though to south.

Diurnal trends show that wind directions remain fairly consistent throughout the day. Winds are typically lighter during the early morning and in the evening with strongest winds observed during daylight hours.



Frequency of counts by wind direction (%)

Figure 6

Annual distribution of the TAPM/CALMET generated winds for the Project site

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final



Frequency of counts by wind direction (%)

#### Figure 7 Seasonal distribution of the TAPM/CALMET generated winds for the Project site



Frequency of counts by wind direction (%)

Figure 8

Diurnal distribution of the TAPM/CALMET generated winds for the Project site

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

### 7.2 Temperature

The temperature data for the Project site show that, for the 12-month CALMET dataset, the temperature was predicted to range between 2.5°C and 38.1°C (average 20.6°C) throughout the year. The temperature was predicted to range between 2.5°C and 27.8°C (average of 13.9°C) during the winter months, and between 15.6°C and 38.1°C (average of 26.0°C) during the summer months.









#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

## 7.3 Atmospheric stability

Atmospheric stability is classified under the Pasquil-Gifford scheme and ranges from Class A, which represents very unstable atmospheric conditions that may typically occur on a sunny day, to Class F which represents very stable atmospheric conditions that typically occur during light wind conditions at night. Unstable conditions (Class A-C) are characterised by strong solar heating of the ground that induces turbulent mixing in the atmosphere close to the ground, which usually results in material from a plume reaching the ground closer to the source than it does for neutral conditions or stable conditions.

This turbulent mixing is the main driver of dispersion during unstable conditions. Dispersion processes for neutral conditions (Class D), are dominated by mechanical turbulence generated as the wind passes over irregularities in the local surface, such as terrain features and building structures. During the night, atmospheric conditions are generally neutral or stable (Class D, E and F) with cloud cover reducing solar heating and enhancing stability. Stability refers to the vertical movement of the atmosphere and is therefore an important factor in the dispersion and transport of a plume within the boundary layer.

Stability class is calculated by CALMET and has been extracted at the Project site. Table 11 shows the distribution of stability classes for the site. Figure 11 shows the distribution of stability class predicted at the site by hour of day.

| Pasquil-Gifford Stability Class | Frequency (%) | Classification     |  |
|---------------------------------|---------------|--------------------|--|
| А                               | 2.2%          | Extremely unstable |  |
| В                               | 12.5%         | Unstable           |  |
| С                               | 16.4%         | Slightly unstable  |  |
| D                               | 25.1%         | Neutral            |  |
| E                               | 8.9%          | Slightly stable    |  |
| F                               | 34.9%         | Stable             |  |

Table 11 Frequency distribution of surface atmospheric stability conditions at the Project Site

Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final



Figure 11 Proportion of stability class predicted at the Project site by hour of day

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

#### 7.4 Mixing height

The mixing height defines the height of the mixed atmosphere above the ground (mixed layer), which varies diurnally. Particulate matter, or other pollutants released at or near the ground, will become dispersed within the mixed layer. During stable atmospheric conditions, the mixing height is often quite low and particulate dispersion is limited to within this layer. During the day, solar radiation heats the ground and causes the air above it to warm, resulting in convection and an increase to the mixing height. The growth of the mixing height is dependent on how well the warmer air from the ground can mix with the cooler upper level air and, therefore, depends on meteorological factors such as the intensity of solar radiation and wind speed. During strong wind speeds, the air will be well mixed, resulting in a high mixing height.

Mixing height information has been extracted from the TAPM/CALMET dataset at the Project site and is presented in Figure 12. The data shows that the mixing height develops at around 6am, increases to a peak around 3pm to 4pm before descending rapidly around 6pm.





Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

# 8. AIR QUALITY ASSESSMENT RESULTS

This section presents the results of the dispersion modelling assessment for:

- Construction diesel generators
- Operation 1,400 MW (2 x 700 MW).

### 8.1 Construction

The predicted maximum concentrations of NO<sub>2</sub>, SO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> due to the operation of diesel generators at any sensitive receptor are presented in Table 12. The results show predicted concentrations due to the diesel generators in isolation and with an ambient background level. Contours of the predicted concentrations of NO<sub>2</sub> across the modelling domain, including ambient background concentrations, are presented in Plate 1 and Plate 2.

The results show that:

- Predicted maximum 1-hour and annual average ground-level concentrations of NO<sub>2</sub> due to the diesel generators during construction, including ambient background concentrations, are well below the Air EPP objectives of 250 µg/m<sup>3</sup> and 62 µg/m<sup>3</sup>, respectively
- Predicted maximum 1-hour, 24-hour and annual average ground-level concentrations of SO<sub>2</sub> due to the diesel generators during construction, including ambient background concentrations, are well below the Air EPP objectives of 570 µg/m<sup>3</sup> and 230 µg/m<sup>3</sup> and 57 µg/m<sup>3</sup>, respectively
- Predicted maximum 24-hour average ground-level concentrations of PM<sub>10</sub> due to the diesel generators during construction, including ambient background concentrations, are well below the Air EPP objective of 50 µg/m<sup>3</sup>
- Predicted maximum 24-hour and annual average ground-level concentrations of PM<sub>2.5</sub> due to the diesel generators during construction, including ambient background concentrations, are well below the Air EPP objectives of 25 µg/m<sup>3</sup> and 8 µg/m<sup>3</sup>.

| Parameter                  | Predicted concentrations (μg/m <sup>3</sup> ) |             |                 |              |             |              |                   |            |
|----------------------------|-----------------------------------------------|-------------|-----------------|--------------|-------------|--------------|-------------------|------------|
|                            | NO <sub>2</sub>                               |             | SO <sub>2</sub> |              |             | <b>PM</b> 10 | PM <sub>2.5</sub> |            |
| Averaging period           | 1-hour                                        | Annual      | 1-hour          | 24-hour      | Annual      | 24-<br>hour  | 24-<br>hour       | Annual     |
| Project in isolation       | 28.4                                          | 0.12        | 0.03            | 0.004        | 0.0001      | 0.6          | 0.6               | 0.02       |
| Project with<br>background | 63.3                                          | 10.8        | 11.4            | 5.7          | 3.6         | 21.0         | 5.6               | 4.4        |
| Objective                  | 250<br>µg/m³                                  | 62<br>µg/m³ | 570<br>μg/m³    | 230<br>µg/m³ | 57<br>μg/m³ | 50<br>μg/m³  | 25<br>µg/m³       | 8<br>µg/m³ |

# Table 12 Construction - Predicted ground-level concentrations of NO<sub>2</sub>, SO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> due to diesel generators in isolation and with ambient background

## 8.2 Operation - 1,400 MW (2 x 700 MW)

The predicted maximum 1-hour average and annual average ground-level concentrations of NO<sub>2</sub> at any sensitive receptor are presented in Table 13 due to the Project with a 1,400 MW capacity in isolation and due to the Project with an ambient background level. Contours of the predicted concentrations of NO<sub>2</sub> across the modelling domain, including ambient background concentrations are presented in Plate 3 to Plate 10.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final
The results show that:

- Predicted maximum 1-hour average ground-level concentrations of NO<sub>2</sub> due to the Project, including ambient background concentrations, are well below the Air EPP objective of 250 µg/m<sup>3</sup> for all load scenarios
- Predicted annual average ground-level concentrations of NO<sub>2</sub> due to the Project, including ambient background concentrations, are well below the Air EPP objective of 62 μg/m<sup>3</sup> for all load scenarios.

The predicted maximum 1-hour average, 24-hour average and annual average ground-level concentrations of  $SO_2$  at any sensitive receptor is presented in Table 13 due to the Project in isolation and due to the Project with an ambient background level. Contours of the predicted concentrations of  $SO_2$  across the modelling domain, including ambient background concentrations are presented in Plate 11 to Plate 22.

The results show that:

- Predicted maximum 1-hour average ground-level concentrations of SO<sub>2</sub> due to the Project, including ambient background concentrations, are below the Air EPP objective of 570 μg/m<sup>3</sup> for all load scenarios
- Predicted maximum 24-hour average ground-level concentrations of SO<sub>2</sub> due to the Project, including ambient background concentrations, are below the Air EPP objective of 230 µg/m<sup>3</sup> for all load scenarios
- Predicted annual average ground-level concentrations of SO<sub>2</sub> due to the Project, including ambient background concentrations, are well below the Air EPP objective of 57 μg/m<sup>3</sup> for all load scenarios.

The predicted maximum 24-hour average ground-level concentrations of  $PM_{10}$  and 24-hour average and annual average ground-level concentrations of  $PM_{2.5}$  at any sensitive receptor are presented in Table 14 due to the Project in isolation and due to the Project with an ambient background level. Contours of the predicted concentrations of  $PM_{10}$  and  $PM_{2.5}$  across the modelling, including ambient background concentrations are presented in Plate 23 to Plate 34.

The results show that:

- Predicted maximum 24-hour average ground-level concentrations of PM<sub>10</sub> due to the Project, including ambient background concentrations, are below the Air EPP objective of 50 μg/m<sup>3</sup> for all load scenarios
- Predicted maximum 24-hour average ground-level concentrations of PM<sub>2.5</sub> due to the Project, including ambient background concentrations, are below the Air EPP objective of 25 μg/m<sup>3</sup> for all load scenarios
- Predicted annual average ground-level concentrations of PM<sub>2.5</sub> due to the Project, including ambient background concentrations, are well below the Air EPP objective of 8 μg/m<sup>3</sup> for all load scenarios.

The predicted ground-level concentrations of arsenic, boron, cadmium, lead and mercury due to the Project are presented in Table 15. The results show that:

- Ground-level concentrations of metals are predicted to be well below all relevant objectives at all sensitive receptors
- Ground-level concentrations are predicted to be less than 0.03% of their respective objectives.

Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|                     |        | Projec          | t in isolation | (µg/m³)         |        | Project with ambient background (μg/m <sup>3</sup> ) |          |                       |                       |          |
|---------------------|--------|-----------------|----------------|-----------------|--------|------------------------------------------------------|----------|-----------------------|-----------------------|----------|
| Scenario            | N      | NO <sub>2</sub> |                | SO <sub>2</sub> |        | N                                                    | 02       |                       | SO <sub>2</sub>       |          |
|                     | 1-hour | Annual          | 1-hour         | 24-hour         | Annual | 1-hour                                               | Annual   | 1-hour                | 24-hour               | Annual   |
| Overload            | 179.8  | 0.9             | 76.2           | 5.9             | 0.4    | 214.7                                                | 11.6     | 87.6                  | 11.6                  | 4.0      |
| 100% load           | 174.0  | 0.9             | 73.7           | 5.8             | 0.4    | 208.9                                                | 11.6     | 85.1                  | 11.5                  | 4.0      |
| 60% load            | 111.4  | 0.9             | 47.3           | 4.1             | 0.4    | 146.3                                                | 11.6     | 58.7                  | 9.8                   | 4.0      |
| 25% load            | 73.4   | 0.7             | 31.1           | 3.1             | 0.3    | 108.3                                                | 11.4     | 42.5                  | 8.8                   | 3.9      |
| Background included | -      | -               | -              | -               | -      | 35                                                   | 11       | 11                    | 6                     | 4        |
| Objective           | -      | -               | -              | -               | -      | 250 µg/m <sup>3</sup>                                | 62 µg/m³ | 570 μg/m <sup>3</sup> | 230 µg/m <sup>3</sup> | 57 µg/m³ |

### Table 13 1,400 MW - Predicted ground-level concentrations of NO2 and SO2 due to Project in isolation and with ambient background

### Table 14 1,400 MW - Predicted ground-level concentrations of PM<sub>10</sub> and PM<sub>2.5</sub> due to Project in isolation and with ambient background

|                     | P                       | roject in isolation (µg | /m³)   | Project with ambient background (µg/m <sup>3</sup> ) |          |                  |  |
|---------------------|-------------------------|-------------------------|--------|------------------------------------------------------|----------|------------------|--|
| Scenario            | <b>PM</b> <sub>10</sub> | PM <sub>2.5</sub>       |        | PM <sub>10</sub>                                     | PN       | N <sub>2.5</sub> |  |
|                     | 24-hour                 | 24-hour                 | Annual | 24-hour                                              | 24-hour  | Annual           |  |
| Overload            | 11.7                    | 11.7                    | 0.7    | 32.1                                                 | 16.7     | 5.1              |  |
| 100% load           | 11.3                    | 11.3 0.7                |        | 31.7                                                 | 16.3     | 5.1              |  |
| 60% load            | 8.0                     | 8.0                     | 0.7    | 28.4                                                 | 13.0     | 5.1              |  |
| 25% load            | 6.1                     | 6.1                     | 0.6    | 26.5                                                 | 11.1     | 5.0              |  |
| Background included | -                       | -                       | -      | 20                                                   | 5        | 4.4              |  |
| Objective           | -                       | -                       | -      | 50 μg/m³                                             | 25 μg/m³ | 8 μg/m³          |  |

Katestone Environmental Pty Ltd D18047-5-Waratah Goal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|           |                         | Project in isolation (μg/m <sup>3</sup> ) |         |                         |           |            |            |  |  |  |
|-----------|-------------------------|-------------------------------------------|---------|-------------------------|-----------|------------|------------|--|--|--|
| Scenario  | Arsenic                 | Boron<br>1-hour Annual                    |         | Cadmium                 | Lead      | Merc       | ury        |  |  |  |
|           | Annual                  |                                           |         | Annual                  | Annual    | 1-hour     | Annual     |  |  |  |
| Overload  | 0.000003                | 0.03                                      | 0.0001  | 0.0000008               | 0.00003   | 0.00001    | 0.0000006  |  |  |  |
| 100% load | 0.000003                | 0.03                                      | 0.00014 | 0.0000008               | 0.00003   | 0.000012   | 0.0000006  |  |  |  |
| 60% load  | 0.000003                | 0.02                                      | 0.00014 | 0.0000008               | 0.00003   | 0.00008    | 0.0000006  |  |  |  |
| 25% load  | 0.000002                | 0.01                                      | 0.00011 | 0.0000007               | 0.00002   | 0.000005   | 0.00000005 |  |  |  |
| Objective | 0.006 µg/m <sup>3</sup> | 50 μg/m³                                  | 5 µg/m³ | 0.005 μg/m <sup>3</sup> | 0.5 μg/m³ | 0.18 μg/m³ | 1.1 µg/m³  |  |  |  |

### Table 15 1,400 MW - Predicted ground-level concentrations of metals due to Project in isolation

### 8.3 Bimblebox Nature Refuge

The maximum predicted annual average ground-level concentrations of NO<sub>2</sub> and SO<sub>2</sub> within the Bimblebox Nature Refuge are presented in Table 16. The maximum predicted 30-day and 90-day average concentrations of fluoride within the area are presented in Table 17.

The results show that predicted ground-level concentrations are well below the Air EPP objectives for protecting the health and biodiversity of ecosystems.

|                     | Project in isola | ation (µg/m³)   | Project with ambient background (µg/m |                 |  |  |
|---------------------|------------------|-----------------|---------------------------------------|-----------------|--|--|
| Scenario            | NO <sub>2</sub>  | SO <sub>2</sub> | NO <sub>2</sub>                       | SO <sub>2</sub> |  |  |
|                     | Annual           | Annual          | Annual                                | Annual          |  |  |
| Overload            | 0.8              | 0.4             | 11.5                                  | 4.0             |  |  |
| 100% load           | 0.8              | 0.3             | 11.5                                  | 3.9             |  |  |
| 60% load            | 0.8              | 0.3             | 11.5                                  | 3.9             |  |  |
| 25% load            | 0.6              | 0.2             | 11.3                                  | 3.8             |  |  |
| Background included | -                | -               | 10.7                                  | 3.6             |  |  |
| Objective           | -                | -               | 33 µg/m <sup>3</sup>                  | 22 µg/m³        |  |  |

# Table 16Predicted ground-level concentrations of NO2 and SO2 due to Project in isolation<br/>and with ambient background at the Bimblebox Nature Refuge

# Table 17Predicted ground-level concentrations of fluoride due to Project in isolation at the<br/>Bimblebox Nature Refuge

| Scopario  | Project in isolation (µg/m <sup>3</sup> ) |           |  |  |  |  |  |
|-----------|-------------------------------------------|-----------|--|--|--|--|--|
| Scenario  | 30-day                                    | 90-day    |  |  |  |  |  |
| Overload  | 0.00017                                   | 0.00015   |  |  |  |  |  |
| 100% load | 0.00017                                   | 0.00015   |  |  |  |  |  |
| 60% load  | 0.00020                                   | 0.00014   |  |  |  |  |  |
| 25% load  | 0.00015                                   | 0.00012   |  |  |  |  |  |
| Objective | 0.84 μg/m³                                | 0.1 μg/m³ |  |  |  |  |  |

### 8.4 Ozone

The maximum predicted contribution of the Project to levels of NO<sub>2</sub> at 10 km from the site was predicted to be between 60 and 105  $\mu$ g/m<sup>3</sup> (29 - 51 ppb), depending on load. As an extremely conservative assumption, the total amount of NO<sub>2</sub> emitted could react causing the production of ozone. The theoretical maximum amount of ozone that could occur as a result is 29 - 51 ppb (62 to 110  $\mu$ g/m<sup>3</sup>). Typical ambient background level of ozone for a rural area is 35 ppb (75  $\mu$ g/m<sup>3</sup>). The maximum predicted cumulative 1-hour average concentrations of ozone would 185  $\mu$ g/m<sup>3</sup>, which is below the Air EPP objective of 210  $\mu$ g/m<sup>3</sup> for ozone.

### 8.5 Cumulative impact assessment – other proposed and approved projects

The potential for cumulative impacts due to the Galilee Power Project and other proposed and approved projects in the area has been considered. There are four approved coal mine projects that have the potential to impact the air quality of the region. The mines include (Figure 13):

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

- Waratah Coal's Galilee Coal Project a 56 Mtpa open cut and underground mine. The coal from this
  project will feed the Project.
- Hancock Prospecting Pty Ltd's Alpha Coal Project a 30 Mtpa open cut thermal coal mine located approximately 18 km to the north-northeast of the Project.
- Hancock Prospecting Pty Ltd's Kevin's Corner Project a 30 Mtpa open cut coal mine located immediately north of the Alpha Coal Project and approximately 35 km to the north of the Project.
- AMCI's South Galilee Coal Project a 19 Mtpa open-cut and underground coal mine located 12 km west of Alpha and 35 km southeast of the Project.



#### Figure 13 Mining leases for approved mines in the vicinity of the Project

The air quality assessment report for the Galilee Coal Project (Northern Export Facility) prepared by Pacific Environment Limited (July 2013) assessed the potential cumulative impacts of the Galilee Coal Project with the Alpha Coal Project and Kevin's Corner Project for PM<sub>10</sub> and PM<sub>2.5</sub>. The results were presented for 36 of the 64 receptors considered in this assessment. Appendix C provides a summary of those results as presented in Pacific Environment Limited (July 2013).

At the time of the air quality assessment of the Galilee Coal Project, the Environmental Impact Statement for South Galilee Coal Project had not been released and therefore it was not included in the assessment. The air quality assessment report for the South Galilee Project prepared by Noise Mapping Australia (February 2012) assessed the impacts of the South Galilee Coal Project in isolation for PM<sub>10</sub> and PM<sub>2.5</sub>. The results were presented for 19 of the 76 receptors considered in this assessment. Appendix C provides a summary of those results.

The cumulative assessment is based on the maximum predictions of PM<sub>10</sub> and PM<sub>2.5</sub> from the Project added to the maximum predictions from the Galilee Coal Project EIS and the South Galilee Coal Project EIS. This is likely to be

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

a conservative assessment because it assumes that the worst-case operational years for each mine overlap, but this is not likely to be the case in reality.

The predicted 24-hour average ground-level concentrations of  $PM_{10}$  and the predicted 24-hour average and annual average ground-level concentrations of  $PM_{2.5}$  are presented in Table 18 to Table 20 for the Project operating capacity of 1,400 MW. The results show that:

- Predicted 24-hour average ground-level concentrations of PM<sub>10</sub> and PM<sub>2.5</sub> as well as annual average ground-level concentrations of PM<sub>2.5</sub> are likely to exceed the relevant Air EPP objectives at several residences. Monklands, Kia Ora, Glen Innes, Lambton Meadow, Spring Creek, Corn Top and Cavendish Homesteads along with Spring Creek will be acquired by Waratah Coal. Hobartville and Wendouree Homesteads will be acquired by Alpha Coal.
- Whilst the cumulative concentrations are above the relevant Air EPP objectives:
  - The contribution of the Project to 24-hour average ground-level concentrations of PM<sub>10</sub> is, at most, 7% at these sensitive receptors
  - The contribution of the Project to 24-hour average ground-level concentrations of PM<sub>2.5</sub> is at most is 20% at these sensitive receptors
  - The contribution of the Project to annual average ground-level concentrations of PM<sub>2.5</sub> is at most is 6% at these sensitive receptors.

| Table 18 | Predicted cumulative 24-hour average ground-level concentrations of PM <sub>10</sub> , |
|----------|----------------------------------------------------------------------------------------|
|          | including the Project (1,400 MW), approved mines and ambient background levels         |

|    |                                    |                                      | Contribution as a percentage (%) |                 |                            |                                                       |                                     |  |  |
|----|------------------------------------|--------------------------------------|----------------------------------|-----------------|----------------------------|-------------------------------------------------------|-------------------------------------|--|--|
| ID | Name                               | 24-hr<br>ΡΜ <sub>10</sub><br>(μg/m³) | Project                          | Ambient<br>bkgd | Galilee<br>Coal<br>Project | Kevin's<br>Corner<br>and<br>Alpha<br>Coal<br>Projects | South<br>Galilee<br>Coal<br>Project |  |  |
| 8  | Alpha                              | 40.6                                 | 3%                               | 50%             | 7%                         | 2%                                                    | 37%                                 |  |  |
| 11 | Bedford Homestead                  | 41.6                                 | 3%                               | 49%             | 10%                        | 2%                                                    | 36%                                 |  |  |
| 12 | Betanga Homestead                  | 64.2                                 | 3%                               | 32%             | 36%                        | 6%                                                    | 23%                                 |  |  |
| 13 | Blairgowrie                        | 21.4                                 | 5%                               | 95%             | 0%                         | 0%                                                    | 0%                                  |  |  |
| 16 | Burgoyne Homestead                 | 32.1                                 | 5%                               | 63%             | 28%                        | 3%                                                    | 0%                                  |  |  |
| 17 | Burtle Homestead                   | 29.0                                 | 6%                               | 70%             | 21%                        | 3%                                                    | 0%                                  |  |  |
| 19 | Cavendish Homestead <sup>a</sup>   | 71.2                                 | 4%                               | 29%             | 52%                        | 1%                                                    | 14%                                 |  |  |
| 20 | Colorado Homestead                 | 51.2                                 | 4%                               | 40%             | 29%                        | 8%                                                    | 20%                                 |  |  |
| 21 | Corn Top Homestead <sup>a</sup>    | 51.5                                 | 4%                               | 40%             | 49%                        | 8%                                                    | 0%                                  |  |  |
| 22 | Creek Farm Homestead               | 52.5                                 | 4%                               | 39%             | 8%                         | 2%                                                    | 48%                                 |  |  |
| 41 | Eulimbie Homestead                 | 28.4                                 | 4%                               | 72%             | 18%                        | 7%                                                    | 0%                                  |  |  |
| 42 | Eureka Homestead                   | 76.7                                 | 4%                               | 27%             | 26%                        | 4%                                                    | 39%                                 |  |  |
| 44 | Gadwell Homestead                  | 43.6                                 | 3%                               | 47%             | 16%                        | 0%                                                    | 34%                                 |  |  |
| 46 | Glen Innes Homestead <sup>a</sup>  | 492.5                                | 1%                               | 4%              | 88%                        | 7%                                                    | 0%                                  |  |  |
| 49 | Hobartville Homestead <sup>b</sup> | 67.0                                 | 5%                               | 30%             | 61%                        | 3%                                                    | 0%                                  |  |  |
| 50 | Inverurie Homestead                | 31.9                                 | 5%                               | 64%             | 28%                        | 3%                                                    | 0%                                  |  |  |
| 52 | Jericho                            | 33.7                                 | 7%                               | 61%             | 30%                        | 3%                                                    | 0%                                  |  |  |
| 53 | Jordan Avon Homestead              | 31.4                                 | 6%                               | 65%             | 29%                        | 0%                                                    | 0%                                  |  |  |
| 56 | Kia Ora Homestead <sup>a</sup>     | 833.9                                | 1%                               | 2%              | 96%                        | 0%                                                    | 0%                                  |  |  |

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|       |                                        |                                      |         | Contributio     | on as a perc               | centage (%)                                           |                                     |
|-------|----------------------------------------|--------------------------------------|---------|-----------------|----------------------------|-------------------------------------------------------|-------------------------------------|
| ID    | Name                                   | 24-hr<br>ΡΜ <sub>10</sub><br>(μg/m³) | Project | Ambient<br>bkgd | Galilee<br>Coal<br>Project | Kevin's<br>Corner<br>and<br>Alpha<br>Coal<br>Projects | South<br>Galilee<br>Coal<br>Project |
| 57    | Lambton Meadows Homestead <sup>a</sup> | 84.6                                 | 3%      | 24%             | 53%                        | 2%                                                    | 18%                                 |
| 59    | Locharnoch                             | 34.0                                 | 5%      | 60%             | 35%                        | 0%                                                    | 0%                                  |
| 61    | Mentmore Homestead                     | 47.9                                 | 3%      | 43%             | 23%                        | 0%                                                    | 31%                                 |
| 62    | Milangavla                             | 44.4                                 | 5%      | 46%             | 45%                        | 5%                                                    | 0%                                  |
| 63    | Monklands <sup>a</sup>                 | 224.8                                | 4%      | 9%              | 80%                        | 7%                                                    | 0%                                  |
| 65    | Mossvale Homestead                     | 41.3                                 | 5%      | 49%             | 5%                         | 5%                                                    | 36%                                 |
| 67    | Oakleigh Homestead                     | 70.5                                 | 4%      | 29%             | 17%                        | 4%                                                    | 45%                                 |
| 73    | Rosefield Homestead                    | 43.7                                 | 5%      | 47%             | 46%                        | 2%                                                    | 0%                                  |
| 74    | Salt Bush Homestead                    | 56.4                                 | 4%      | 36%             | 19%                        | 9%                                                    | 32%                                 |
| 75    | Speculation Homestead                  | 21.2                                 | 4%      | 96%             | 0%                         | 0%                                                    | 0%                                  |
| 76    | Spring Creek <sup>a</sup>              | 83.7                                 | 3%      | 24%             | 71%                        | 2%                                                    | 0%                                  |
| 79    | Surbiton Homestead                     | 33.3                                 | 3%      | 61%             | 30%                        | 6%                                                    | 0%                                  |
| 81    | The Grove Homestead                    | 41.0                                 | 4%      | 50%             | 5%                         | 5%                                                    | 37%                                 |
| 82    | Toarbee                                | 41.0                                 | 4%      | 50%             | 37%                        | 10%                                                   | 0%                                  |
| 84    | Tressillian Homestead                  | 47.8                                 | 3%      | 43%             | 31%                        | 2%                                                    | 21%                                 |
| 86    | Wendouree Homestead <sup>b</sup>       | 55.7                                 | 6%      | 37%             | 31%                        | 27%                                                   | 0%                                  |
| Obje  | Objective 50                           |                                      |         | -               | -                          |                                                       |                                     |
| Table | note:                                  |                                      |         |                 |                            |                                                       |                                     |

<sup>a</sup> These receptors will be acquired by Waratah

 $^{\rm b}$  These receptors will be acquired by Alpha Coal

# Table 19Predicted cumulative 24-hour average ground-level concentrations of PM2.5,<br/>including the Project (1,400 MW), approved mines and ambient background levels

|    |                                  |                                       |         | Contributio     | oution as a percentage (%) |                                                       |                                     |  |  |
|----|----------------------------------|---------------------------------------|---------|-----------------|----------------------------|-------------------------------------------------------|-------------------------------------|--|--|
| ID | Name                             | 24-hr<br>PM <sub>2.5</sub><br>(µg/m³) | Project | Ambient<br>bkgd | Galilee<br>Coal<br>Project | Kevin's<br>Corner<br>and<br>Alpha<br>Coal<br>Projects | South<br>Galilee<br>Coal<br>Project |  |  |
| 8  | Alpha                            | 10.2                                  | 12%     | 49%             | 10%                        | 10%                                                   | 20%                                 |  |  |
| 11 | Bedford Homestead                | 11.2                                  | 11%     | 45%             | 18%                        | 9%                                                    | 18%                                 |  |  |
| 12 | Betanga Homestead                | 19.8                                  | 9%      | 25%             | 50%                        | 5%                                                    | 10%                                 |  |  |
| 13 | Blairgowrie                      | 6.0                                   | 17%     | 83%             | 0%                         | 0%                                                    | 0%                                  |  |  |
| 16 | Burgoyne Homestead               | 9.7                                   | 18%     | 51%             | 31%                        | 0%                                                    | 0%                                  |  |  |
| 17 | Burtle Homestead                 | 9.6                                   | 17%     | 52%             | 31%                        | 0%                                                    | 0%                                  |  |  |
| 19 | Cavendish Homestead <sup>a</sup> | 27.8                                  | 10%     | 18%             | 58%                        | 7%                                                    | 7%                                  |  |  |
| 20 | Colorado Homestead               | 15.8                                  | 12%     | 32%             | 38%                        | 6%                                                    | 13%                                 |  |  |
| 21 | Corn Top Homestead <sup>a</sup>  | 19.1                                  | 11%     | 26%             | 52%                        | 10%                                                   | 0%                                  |  |  |
| 22 | Creek Farm Homestead             | 12.1                                  | 18%     | 41%             | 16%                        | 0%                                                    | 25%                                 |  |  |
| 41 | Eulimbie Homestead               | 8.0                                   | 13%     | 62%             | 25%                        | 0%                                                    | 0%                                  |  |  |

### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|       |                                        |                                                    | Contribution as a percentage (%) |                 |                            |                                                       |                                     |  |  |
|-------|----------------------------------------|----------------------------------------------------|----------------------------------|-----------------|----------------------------|-------------------------------------------------------|-------------------------------------|--|--|
| ID    | Name                                   | 24-hr<br>PM <sub>2.5</sub><br>(μg/m <sup>3</sup> ) | Project                          | Ambient<br>bkgd | Galilee<br>Coal<br>Project | Kevin's<br>Corner<br>and<br>Alpha<br>Coal<br>Projects | South<br>Galilee<br>Coal<br>Project |  |  |
| 42    | Eureka Homestead                       | 24.3                                               | 14%                              | 21%             | 41%                        | 8%                                                    | 16%                                 |  |  |
| 44    | Gadwell Homestead                      | 11.2                                               | 10%                              | 45%             | 27%                        | 0%                                                    | 18%                                 |  |  |
| 46    | Glen Innes Homestead <sup>a</sup>      | 129.1                                              | 5%                               | 4%              | 91%                        | 0%                                                    | 0%                                  |  |  |
| 49    | Hobartville Homestead <sup>b</sup>     | 23.6                                               | 15%                              | 21%             | 59%                        | 4%                                                    | 0%                                  |  |  |
| 50    | Inverurie Homestead                    | 10.5                                               | 15%                              | 47%             | 38%                        | 0%                                                    | 0%                                  |  |  |
| 52    | Jericho                                | 11.3                                               | 20%                              | 44%             | 35%                        | 0%                                                    | 0%                                  |  |  |
| 53    | Jordan Avon Homestead                  | 11.0                                               | 18%                              | 45%             | 36%                        | 0%                                                    | 0%                                  |  |  |
| 56    | Kia Ora Homestead <sup>a</sup>         | 223.5                                              | 2%                               | 2%              | 94%                        | 2%                                                    | 0%                                  |  |  |
| 57    | Lambton Meadows Homestead <sup>a</sup> | 30.2                                               | 7%                               | 17%             | 66%                        | 3%                                                    | 7%                                  |  |  |
| 59    | Locharnoch                             | 10.6                                               | 15%                              | 47%             | 38%                        | 0%                                                    | 0%                                  |  |  |
| 61    | Mentmore Homestead                     | 12.5                                               | 12%                              | 40%             | 32%                        | 0%                                                    | 16%                                 |  |  |
| 62    | Milangavla                             | 16.0                                               | 12%                              | 31%             | 56%                        | 0%                                                    | 0%                                  |  |  |
| 63    | Monklands <sup>a</sup>                 | 69.4                                               | 14%                              | 7%              | 75%                        | 4%                                                    | 0%                                  |  |  |
| 65    | Mossvale Homestead                     | 10.9                                               | 18%                              | 46%             | 9%                         | 9%                                                    | 18%                                 |  |  |
| 67    | Oakleigh Homestead                     | 20.1                                               | 16%                              | 25%             | 30%                        | 10%                                                   | 20%                                 |  |  |
| 73    | Rosefield Homestead                    | 16.3                                               | 14%                              | 31%             | 49%                        | 6%                                                    | 0%                                  |  |  |
| 74    | Salt Bush Homestead                    | 16.0                                               | 13%                              | 31%             | 31%                        | 12%                                                   | 12%                                 |  |  |
| 75    | Speculation Homestead                  | 5.8                                                | 13%                              | 87%             | 0%                         | 0%                                                    | 0%                                  |  |  |
| 76    | Spring Creek <sup>a</sup>              | 29.3                                               | 8%                               | 17%             | 75%                        | 0%                                                    | 0%                                  |  |  |
| 79    | Surbiton Homestead                     | 10.9                                               | 9%                               | 46%             | 37%                        | 9%                                                    | 0%                                  |  |  |
| 81    | The Grove Homestead                    | 12.6                                               | 13%                              | 40%             | 8%                         | 8%                                                    | 32%                                 |  |  |
| 82    | Toarbee                                | 13.6                                               | 12%                              | 37%             | 44%                        | 7%                                                    | 0%                                  |  |  |
| 84    | Tressillian Homestead                  | 14.4                                               | 10%                              | 35%             | 42%                        | 0%                                                    | 14%                                 |  |  |
| 86    | Wendouree Homestead <sup>b</sup>       | 17.3                                               | 19%                              | 29%             | 35%                        | 17%                                                   | 0%                                  |  |  |
| Obje  | ctive                                  | 25                                                 | -                                | -               | -                          | -                                                     | -                                   |  |  |
| Tabla | noto:                                  |                                                    |                                  |                 |                            |                                                       |                                     |  |  |

Table note:

<sup>a</sup> These receptors will be acquired by Waratah

<sup>b</sup> These receptors will be acquired by Alpha Coal

### Predicted cumulative annual average ground-level concentrations of PM<sub>2.5</sub>, including the Project (1,400 MW), approved mines and ambient background levels Table 20

|    |                    |                                        | Contribution as a percentage (%) |                 |                            |                                                       |                                     |  |  |
|----|--------------------|----------------------------------------|----------------------------------|-----------------|----------------------------|-------------------------------------------------------|-------------------------------------|--|--|
| ID | Name               | Annual<br>PM <sub>2.5</sub><br>(μg/m³) | Project                          | Ambient<br>bkgd | Galilee<br>Coal<br>Project | Kevin's<br>Corner<br>and<br>Alpha<br>Coal<br>Projects | South<br>Galilee<br>Coal<br>Project |  |  |
| 8  | Alpha              | 4.9                                    | 1%                               | 89%             | 0%                         | 0%                                                    | 10%                                 |  |  |
| 11 | Bedford Homestead  | 5.0                                    | 1%                               | 89%             | 0%                         | 0%                                                    | 10%                                 |  |  |
| 12 | Betanga Homestead  | 6.0                                    | 2%                               | 73%             | 17%                        | 0%                                                    | 8%                                  |  |  |
| 13 | Blairgowrie        | 4.5                                    | 1%                               | 99%             | 0%                         | 0%                                                    | 0%                                  |  |  |
| 16 | Burgoyne Homestead | 4.5                                    | 2%                               | 98%             | 0%                         | 0%                                                    | 0%                                  |  |  |

### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment - Final

|       | Contribution as a percentage (%)       |                                        |         |                 |                            |                                                       |                                     |
|-------|----------------------------------------|----------------------------------------|---------|-----------------|----------------------------|-------------------------------------------------------|-------------------------------------|
| ID    | Name                                   | Annual<br>PM <sub>2.5</sub><br>(μg/m³) | Project | Ambient<br>bkgd | Galilee<br>Coal<br>Project | Kevin's<br>Corner<br>and<br>Alpha<br>Coal<br>Projects | South<br>Galilee<br>Coal<br>Project |
| 17    | Burtle Homestead                       | 4.5                                    | 1%      | 99%             | 0%                         | 0%                                                    | 0%                                  |
| 19    | Cavendish Homestead <sup>a</sup>       | 10.1                                   | 2%      | 43%             | 40%                        | 10%                                                   | 5%                                  |
| 20    | Colorado Homestead                     | 6.0                                    | 2%      | 73%             | 17%                        | 0%                                                    | 8%                                  |
| 21    | Corn Top Homestead <sup>a</sup>        | 5.5                                    | 2%      | 80%             | 18%                        | 0%                                                    | 0%                                  |
| 22    | Creek Farm Homestead                   | 5.0                                    | 2%      | 88%             | 0%                         | 0%                                                    | 10%                                 |
| 41    | Eulimbie Homestead                     | 4.4                                    | 1%      | 99%             | 0%                         | 0%                                                    | 0%                                  |
| 42    | Eureka Homestead                       | 6.1                                    | 3%      | 73%             | 17%                        | 0%                                                    | 8%                                  |
| 44    | Gadwell Homestead                      | 4.9                                    | 1%      | 89%             | 0%                         | 0%                                                    | 10%                                 |
| 46    | Glen Innes Homestead <sup>a</sup>      | 31.8                                   | 1%      | 14%             | 82%                        | 3%                                                    | 0%                                  |
| 49    | Hobartville Homestead <sup>b</sup>     | 5.6                                    | 3%      | 79%             | 18%                        | 0%                                                    | 0%                                  |
| 50    | Inverurie Homestead                    | 5.5                                    | 3%      | 79%             | 18%                        | 0%                                                    | 0%                                  |
| 52    | Jericho                                | 5.5                                    | 2%      | 80%             | 0%                         | 18%                                                   | 0%                                  |
| 53    | Jordan Avon Homestead                  | 5.5                                    | 3%      | 79%             | 18%                        | 0%                                                    | 0%                                  |
| 56    | Kia Ora Homestead <sup>a</sup>         | 41.7                                   | 1%      | 11%             | 86%                        | 2%                                                    | 0%                                  |
| 57    | Lambton Meadows Homestead <sup>a</sup> | 8.1                                    | 2%      | 55%             | 37%                        | 0%                                                    | 6%                                  |
| 59    | Locharnoch                             | 5.5                                    | 2%      | 80%             | 18%                        | 0%                                                    | 0%                                  |
| 61    | Mentmore Homestead                     | 5.0                                    | 1%      | 89%             | 0%                         | 0%                                                    | 10%                                 |
| 62    | Milangavla                             | 6.6                                    | 3%      | 67%             | 30%                        | 0%                                                    | 0%                                  |
| 63    | Monklands <sup>a</sup>                 | 12.1                                   | 6%      | 36%             | 49%                        | 8%                                                    | 0%                                  |
| 65    | Mossvale Homestead                     | 4.9                                    | 1%      | 89%             | 0%                         | 0%                                                    | 10%                                 |
| 67    | Oakleigh Homestead                     | 5.0                                    | 2%      | 88%             | 0%                         | 0%                                                    | 10%                                 |
| 73    | Rosefield Homestead                    | 6.6                                    | 2%      | 67%             | 15%                        | 15%                                                   | 0%                                  |
| 74    | Salt Bush Homestead                    | 5.0                                    | 3%      | 88%             | 0%                         | 0%                                                    | 10%                                 |
| 75    | Speculation Homestead                  | 4.5                                    | 1%      | 99%             | 0%                         | 0%                                                    | 0%                                  |
| 76    | Spring Creek <sup>a</sup>              | 10.6                                   | 2%      | 41%             | 47%                        | 9%                                                    | 0%                                  |
| 79    | Surbiton Homestead                     | 4.4                                    | 1%      | 99%             | 0%                         | 0%                                                    | 0%                                  |
| 81    | The Grove Homestead                    | 4.9                                    | 1%      | 89%             | 0%                         | 0%                                                    | 10%                                 |
| 82    | Toarbee                                | 5.5                                    | 2%      | 80%             | 18%                        | 0%                                                    | 0%                                  |
| 84    | Tressillian Homestead                  | 5.0                                    | 1%      | 89%             | 0%                         | 0%                                                    | 10%                                 |
| 86    | Wendouree Homestead <sup>b</sup>       | 6.5                                    | 1%      | 68%             | 15%                        | 15%                                                   | 0%                                  |
| Objec | ctive                                  | 8                                      | -       | -               | -                          | -                                                     | -                                   |
| Table | note:                                  |                                        |         |                 |                            |                                                       |                                     |

<sup>a</sup> These receptors will be acquired by Waratah

<sup>b</sup> These receptors will be acquired by Alpha Coal

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

## 9. GREENHOUSE GAS ASSESSMENT

### 9.1 Background

The term greenhouse gases (GHG) comes from the 'greenhouse effect', which refers to the natural process that warms the Earth's surface. GHG in the atmosphere absorb the solar radiation released by the Earth's surface and then radiates some heat back towards the ground, increasing the surface temperature. Human activity, especially burning fossil fuels and deforestation, is increasing the concentration of GHG in the atmosphere and hence increasing the absorption of outgoing heat energy. Even a small increase in long-term average surface temperatures has numerous direct and indirect consequences for climate.

Australia is a signatory to United Nations Framework Convention on Climate Change (UNFCCC), the associated Kyoto Protocol signalling its commitment to reducing GHG emissions at a national level. Under the Paris Agreement, the most recent progression of the UNFCCC, Australia has set an ambitious target to reduce emissions by 26-28 per cent below 2005 levels by 2030, building on the 2020 target of reducing emissions by five per cent below 2000 levels.

The main GHG associated with the Project is carbon dioxide (CO<sub>2</sub>), with smaller contributions from methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O). These gases vary in effect and longevity in the atmosphere, however a system named Global Warming Potential (GWP) allows them to be described in terms of CO<sub>2</sub> (the most prevalent greenhouse gas) called carbon dioxide equivalents (CO<sub>2</sub>-e). A unit of one tonne of CO<sub>2</sub>-e is the basic unit used in carbon accounting. In simple terms the greenhouse gas multiplied by its associated GWP (denoted in squares). For example:

tonnes  $CO_2$ -e = tonnes  $CO_2 \times 1$  + tonnes  $CH_4 \times 25$  + tonnes  $N_2O \times 310$ 

While few, if any, individual Projects would make a noticeable change to the Earth's climate, the summation of human activities increases the concentrations of GHG in the upper atmosphere does. Climate change is an environmental concern at a global level. Governments and the global scientific community have established conventions for accounting for GHG emissions to enable the transparent and verifiable assessment of GHG emissions across all global jurisdictions. This assessment employs these established conventions so that the relative impact of the Project can be assessed and understood.

### 9.2 Regulatory Framework for Greenhouse Gas Emissions

### 9.2.1 National policy

Australia will meet its targets through the Government's Direct Action Plan. The Emissions Reduction Fund (ERF) is a central component of the Direct Action policies that is made up of an element to credit emissions reductions, a fund to purchase emissions reductions, and a Safeguard Mechanism.

The Safeguard Mechanism has been put in place to ensure that emissions reductions purchased by the Government through the ERF are not offset by significant increases in emissions by large emitters elsewhere in the economy. The Safeguard Mechanism commenced on 1 July 2016 and requires Australia's largest emitters to keep emissions within baseline levels. It applies to around 140 large businesses that have facilities with direct emissions (Scope 1 Emissions) of more than 100,000 tonnes of carbon dioxide equivalent (tCO<sub>2</sub>-e) a year and is expected to cover approximately half of Australia's emissions.

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

Once the Project is operational (Year 4 onwards) direct emissions of GHG associated with the Project are anticipated to exceed 100,000 tCO<sub>2</sub>-e for all years of operation. Annual GHG emissions associated with the construction phase (Year 1 - 3) are not expected to exceed 100,000 tCO<sub>2</sub>-e. As a result, the Project will be subject to the requirements of the Safeguard Mechanism from Year 4 onwards.

## 9.2.2 National Greenhouse and Energy Reporting (NGER)

The *National Greenhouse and Energy Reporting Act 2007* (NGER Act) established a national framework for corporations to report GHG emissions and energy consumption.

The NGER Regulation recognises Scope 1 and Scope 2 emissions as follows:

- Scope 1 emissions in relation to a facility, means the release of GHG into the atmosphere as a direct result of an activity or series of activities (including ancillary activities) that constitute the facility.
- Scope 2 emissions in relation to a facility, means the release of GHG into the atmosphere as a direct result of one or more activities that generate electricity, heating, cooling or steam that is consumed by the facility but that do not form part of the facility.

Registration and reporting is mandatory for corporations that have energy production, energy use or GHG emissions that exceed specified thresholds. GHG emission thresholds include Scope 1 and Scope 2 emissions. NGER reporting thresholds are summarised in Table 21.

### Table 21 NGER annual reporting thresholds – greenhouse gas emissions and energy use

| Threshold level | Threshold type              |                         |  |  |  |  |  |
|-----------------|-----------------------------|-------------------------|--|--|--|--|--|
|                 | GHG (kt CO <sub>2</sub> -e) | Energy consumption (TJ) |  |  |  |  |  |
| Facility        | 25                          | 100                     |  |  |  |  |  |
| Corporate       | 50                          | 200                     |  |  |  |  |  |
|                 |                             |                         |  |  |  |  |  |

Note: kt  $CO_2$ -e = kilotonnes of carbon dioxide equivalent. TJ = terajoules.

Annual emissions (Scope 1 + Scope 2) associated with the Project range from:

- 700 MW configuration:
  - Construction: 0.7 to 4.6 ktCO2-e
  - Operations: 3,536 to 4,714 ktCO<sub>2</sub>-e
- 1,400 MW configuration:
  - Construction: 0.7 to 4.6 ktCO2-e
  - Operations: 7,070 to 9,427 ktCO<sub>2</sub>-e

Once operational, GHG emissions associated with the power station will exceed the NGER facility threshold. As a result, Waratah will have reporting obligations associated with the Project under the NGER Scheme, including estimating and reporting their GHG emissions on an annual basis for all years of operations. However, the annual emissions during the construction period do not exceed facility thresholds.

### 9.3 Methodology

Pollutants of importance to climate change, associated with the Project, are carbon dioxide, methane and nitrous oxide. This study has assessed the emissions of greenhouse gases from the Project during construction and operation based on activity data representative of the proposed activities and the methods described in the following documents:

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

- The National Greenhouse Accounts, July 2018 (Commonwealth Department of the Environment and Energy, 2018)
- National Greenhouse and Energy Reporting (Measurement) Determination 2008
- The Greenhouse Gas Protocol.

### 9.3.1 Emissions

Scope 1 and 2 greenhouse gas emissions will be estimated on an annual basis for the Project. This will include emissions from:

#### Scope 1 GHG emissions

- Diesel combustion
  - o Construction
    - Heavy machinery including earthmoving equipment
    - Haulage vehicles
    - Site vehicles
    - Diesel generators
  - o Operations
    - Coal transfer operations heavy machinery and haulage vehicles
    - Ash management operations earthmoving equipment
    - Site vehicles
- Land clearing
- Coal combustion
  - o Electricity generation
- Fuel oil combustion
  - o Ancillary operations including burner support for start-up and burner group cycling
- Industrial processes
  - SF<sub>6</sub> fugitive emission from switch gear and transformers

#### Scope 2 GHG Emissions

• Electricity usage for the cold start of the power station

#### Grid electricity and Scope 2 emissions

It is anticipated that grid sourced electricity will be used occasionally for the cold start of the power station following either a scheduled shutdown or an unexpected event or equipment failure resulting in a plant shutdown. Preliminary estimates indicate that the use of grid electricity for the Project will be minimal and immaterial to the GHG assessment of the Project. Consequently Scope 2 GHG emissions and energy use associated with the use of grid electricity have not been included in this assessment.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

#### Land clearing

Land clearing was also considered. There is a limited amount of land clearing associated with the Project due to the site being cleared previously for cattle grazing. The footprint of the Project will be relatively small and the resulting GHG emissions originating from land clearing have not been included as they are not significant compared to the annual GHG emissions associated with the Project.

### 9.3.2 Emissions estimation

GHG emissions associated with the Project have been considered on an annual basis for the life of the Project. The configuration considered in the GHG assessment was 1,400 MW (2 x 700 MW generation units).

The heat rate or electrical efficiency that can be achieved by the generation units is in the range of 8,800-8,972 kJ/kWh (40-41% electrical efficiency). GHG emissions and energy use associated with coal combustion has been estimated for the lower and higher limits of this range referred to as the Lower Heat Rate (LHR) and the Higher Heat Rate (HHR), respectively.

In this section a summary of estimated annual GHG emissions associated with the Project, expressed as tonnes of CO<sub>2</sub>-e per annum is presented. Reporting obligations based on this conservative estimate of annual GHG emissions are summarised, along with measures to mitigate GHG emissions through avoidance and minimisation.

The methodologies used to estimate the GHG emissions resulting from the Project are consistent with:

- 1. National Greenhouse and Energy Reporting (Measurement) Determination 2008
- 2. The National Greenhouse Accounts, July 2018 (Commonwealth Department of the Environment and Energy, 2018)
- 3. The Greenhouse Gas Protocol.

In particular, the methodology is consistent with a Method 1 approach as detailed in the *National Greenhouse and Energy Reporting (Measurement) Determination.* 

The emission factors and energy content for each of the emissions sources that have been used in the assessment are summarised in Table 22.

| Table 22 | Emission factors and energy content for GHG emission sources |
|----------|--------------------------------------------------------------|
|----------|--------------------------------------------------------------|

| Emission source                        | Scope | Energy<br>content | Units  | Emission<br>factor | Units                                  |
|----------------------------------------|-------|-------------------|--------|--------------------|----------------------------------------|
| Diesel - transport                     | 1     | 38.6              | GJ/kL  | 70.5               | kgCO <sub>2</sub> -e/GJ                |
| Diesel - stationary                    | 1     | 38.6              | GJ/kL  | 70.2               | kgCO <sub>2</sub> -e/GJ                |
| Sulfur Hexafluoride (SF <sub>6</sub> ) | 1     | -                 | -      | 22,800             | kgCO <sub>2</sub> -e/kgSF <sub>6</sub> |
| Electricity (Queensland)               | 2     | 3.6               | MJ/kWh | 0.79               | kg CO <sub>2</sub> -e/kWh              |

Sources: National Greenhouse and Energy Reporting (Measurement) Determination, National Greenhouse Accounts Factors (July 2018),

Notes:

GJ/kL = gigajoules per kilolitres. GJ/t = gigajoules per tonne. MJ/kWh = megajoules per kilowatt hour. Kg  $CO_2$ -e/GJ = kilograms of carbon dioxide equivalent per gigajoule. T  $CO_2$ -e/t ROM = tonnes of carbon dioxide equivalent per tonne of ROM coal. T  $CO_2$ -e/t ANFO = tonnes of carbon dioxide equivalent per tonne of ANFO. Kg  $CO_2$ -e/kWh = kilograms of carbon dioxide equivalent per kilowatt hour.

Coal for the Project will be sourced from the adjacent Galilee Coal Project. Average properties of the coal are summarised in Table 23.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

### Table 23Average coal properties

| Properties*                                     | Value | Unit |  |  |  |  |
|-------------------------------------------------|-------|------|--|--|--|--|
| Moisture                                        | 8.80  | %    |  |  |  |  |
| Ash                                             | 8.35  | %    |  |  |  |  |
| Volatile matter                                 | 35.43 | %    |  |  |  |  |
| Fixed Carbon                                    | 47.42 | %    |  |  |  |  |
| Carbon                                          | 66.2  | %    |  |  |  |  |
| Hydrogen                                        | 4.1   | %    |  |  |  |  |
| Nitrogen                                        | 1.6   | %    |  |  |  |  |
| Sulfur                                          | 0.6   | %    |  |  |  |  |
| Oxygen                                          | 10.4  | %    |  |  |  |  |
| Gross energy                                    | 26.80 | GJ/t |  |  |  |  |
| Net energy                                      | 25.78 | GJ/t |  |  |  |  |
| Table notes:<br>*proximate air-dried properties |       |      |  |  |  |  |

### 9.4 Results

### 9.4.1 GHG emissions and energy use summary

Construction and commissioning activities associated with the Project are anticipated to take just over 3 years with operations of the Project scheduled to commence in the second quarter of Year 4 of the Project. Although the timing of the Project may not be exactly aligned with a calendar year, the schedule of the Project has been approximated on an annual basis commencing at the outset of the construction phase of the Project.

Anticipated emission sources associated with the Project against the approximated Project schedule are summarised in Table 24. Estimated annual GHG emissions and energy use associated with the Project are summarised in Table 25 and Table 26 respectively.

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

#### Table 24 Emission source summary

| Stage                                                  | Emission source                 |                 |       | Year    |           |           |            |             |  |
|--------------------------------------------------------|---------------------------------|-----------------|-------|---------|-----------|-----------|------------|-------------|--|
|                                                        | Description                     | Туре            | Units | 1       | 2         | 3         | 4          | 5+          |  |
| Construction                                           | Power generation                | Diesel          | L     | 86,225  | 711,353   | 431,123   | 35,927     | -           |  |
|                                                        | Vehicles (transport)            | Diesel          | L     | 174,247 | 1,809,583 | 1,260,464 | 107,371    | -           |  |
|                                                        | Vehicles/equipment (stationary) | Diesel          | L     | 3,000   | 3,000     | -         | -          | -           |  |
| Operation<br>(2 x 700 MW)                              | Power generation (LHR)          | Coal            | GJ    | -       | -         | -         | 75,038,309 | 100,051,079 |  |
|                                                        | Power generation (HHR)          |                 |       | -       | -         | -         | 73,599,768 | 98,133,024  |  |
|                                                        | Ancillary operation             | Fuel oil        | L     | -       | -         | -         | 966,770    | 1,289,026   |  |
|                                                        | Vehicles (transport)            | Diesel          | L     | -       | -         | -         | 100,310    | 133,746     |  |
|                                                        | Vehicles/equipment (stationary) | Diesel          | L     | -       | -         | -         | 92,215     | 122,953     |  |
|                                                        | Transformers/switch gear        | SF <sub>6</sub> | kg    | -       | -         | -         | 3          | 4           |  |
| Table notes: Low Heat Rate (LHR), High Heat Rate (HHR) |                                 |                 |       |         |           |           |            |             |  |

#### Table 25 **GHG** emissions summary

| Stage                                                  | Emission sour                   | Year (tCO <sub>2</sub> -e) |       |     |       |       |           |           |
|--------------------------------------------------------|---------------------------------|----------------------------|-------|-----|-------|-------|-----------|-----------|
|                                                        | Description                     | Туре                       | Scope | 1   | 2     | 3     | 4         | 5+        |
|                                                        | Power generation                | Diesel                     | 1     | 234 | 1,928 | 1,168 | 97        | -         |
| Construction                                           | Vehicles (transport)            | Diesel                     | 1     | 474 | 4,925 | 3,431 | 292       | -         |
|                                                        | Vehicles/equipment (stationary) | Diesel                     | 1     | 8   | 8     | -     | -         | -         |
|                                                        | Power generation (LHR)          | Cool                       | 1 -   | -   | -     | -     | 7,067,171 | 9,422,895 |
|                                                        | Power generation (HHR)          | Coal                       |       | -   | -     | -     | 6,931,688 | 9,242,251 |
|                                                        | Ancillary operation             | Fuel oil                   | 1     | -   | -     | -     | 2,620     | 3,493     |
| Operation                                              | Vehicles (transport)            | Diesel                     | 1     | -   | -     | -     | 273       | 364       |
| (2 x 700 MW)                                           | Vehicles/equipment (stationary) | Diesel                     | 1     | -   | -     | -     | 250       | 333       |
|                                                        | Transformers/switch gear        | SF <sub>6</sub>            | 1     | -   | -     | -     | 68        | 91        |
|                                                        |                                 | Lł                         | IR    | 716 | 6,861 | 4,599 | 7,070,772 | 9,427,176 |
|                                                        | 2 X 700 WW                      | HHR                        |       | 716 | 6,861 | 4,599 | 6,935,289 | 9,246,532 |
| Table notes: Low Heat Rate (LHR), High Heat Rate (HHR) |                                 |                            |       |     |       |       |           |           |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

### Table 26Energy consumption summary

| Stage                                                  | Emission source                 |     |                 | Year (GJ) |        |        |            |             |  |
|--------------------------------------------------------|---------------------------------|-----|-----------------|-----------|--------|--------|------------|-------------|--|
| Stage                                                  | Description                     |     | Туре            | 1         | 2      | 3      | 4          | 5+          |  |
|                                                        | Power generation                |     | Diesel          | 3,328     | 27,458 | 16,641 | 1,387      | -           |  |
| Construction                                           | Vehicles (transport)            |     | Diesel          | 6,726     | 69,850 | 48,654 | 4,145      | -           |  |
|                                                        | Vehicles/equipment (stationary) |     | Diesel          | 116       | 116    | -      | -          | -           |  |
|                                                        | Power generation (LH            | IR) | Qual            | -         | -      | -      | 75,038,309 | 100,051,079 |  |
|                                                        | Power generation (HHR)          |     | Coal            |           |        |        | 73,599,768 | 98,133,024  |  |
| Operations                                             | Ancillary operation             |     | Fuel oil        | -         | -      | -      | 37,317     | 49,756      |  |
| (2 x 700 MW)                                           | Vehicles (transport)            |     | Diesel          | -         | -      | -      | 3,872      | 5,163       |  |
|                                                        | Vehicles/equipment (stationary) |     | Diesel          | -         | -      | -      | 3,559      | 4,746       |  |
|                                                        | Transformers/switch gear        |     | SF <sub>6</sub> | -         | -      | -      | -          | -           |  |
| Totals                                                 | 2 x 700 MW                      | LH  | R               | 10,170    | 97,424 | 65,295 | 75,088,589 | 100,110,744 |  |
|                                                        |                                 | НН  | R               | 10,170    | 97,424 | 65,295 | 73,650,048 | 98,192,689  |  |
| Table notes: Low Heat Rate (LHR), High Heat Rate (HHR) |                                 |     |                 |           |        |        |            |             |  |

Katestone Environmental Pty Ltd
 D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

Once the Project becomes operational the vast majority of GHG emissions (over 99.95%) are associated with the combustion of coal for electricity generation with the remainder of emissions being associated with fuel oil for ancillary operations, diesel use for vehicles and other equipment and to an even lesser extent  $SF_6$  used for the insulation of switchgear.

For comparative purposes the latest GHG inventory estimates for Australia and Queensland (including Land Use, Land Use Change and Forestry [LULUCF]) are 534 Mt CO<sub>2</sub>-e and 151 Mt CO<sub>2</sub>-e, respectively (Commonwealth of Australia, 2018a and Commonwealth of Australia, 2018b). With maximum annual GHG emissions of 9,427 ktCO<sub>2</sub>-e, the Project could contribute up to 1.8% of national emissions and 2.6% of Queensland emissions. At a national level, the Project has the potential to reduce GHG emissions of between 2,500 and 5,500 ktCO<sub>2</sub>-e annually through the displacement of emissions from older less efficient power stations.

### 9.4.2 Regulatory obligations – NGER and the safeguard mechanism

A summary of GHG emissions and energy use based on power station configuration is provided in Table 27.

| Description          | Units                  | Year 1 | Year 2 | Year 3 | Year 4 | Year 5+ |
|----------------------|------------------------|--------|--------|--------|--------|---------|
| GHG emissions*       | ktCO <sub>2</sub> -e/y | 1      | 7      | 5      | 7,071  | 9,427   |
| Energy consumption** | TJ/y                   | 10     | 97     | 65     | 75,089 | 100,111 |
| Energy production*** | GWh/y                  | -      | -      | -      | 8,364  | 11,151  |
|                      | TJ/y                   | -      | -      | -      | 30,109 | 40,145  |

#### Table 27 GHG emissions and energy use summary

Table notes: \*Maximum annual GHG emissions based on LHR, \*\*Maximum annual energy consumption based on LHR, \*\*\*Total energy generated by the power station including energy generated and subsequently used by the power station

Based on the NGER Reporting thresholds detailed in Table 21, with the exception of the construction period (Years 1 to 3), the Project will exceed the facility-based thresholds of 25 ktCO2-e/y and 100 TJ/y from Year 4 onwards. From this time Waratah will have ongoing reporting obligations associated with the Project including annual assessment of GHG emissions as set out by the *NGER Act* and the *National Greenhouse and Energy Reporting (Measurement) Determination*. As Waratah is the corporate entity for both the Galilee Coal Project and the Project, it is likely that the NGER corporate reporting responsibilities will mean that the Project is reported earlier than year 4.

Once operational annual Scope 1 GHG emissions associated with the Project are anticipated to exceed 100 kt CO<sub>2</sub>-e/y for all years of operation. Under the current Safeguard Mechanism facilities with Scope 1 emissions of more than 100 kt CO<sub>2</sub>-e/y are required to keep their emissions within baseline levels. This Safeguard Mechanism would apply to the Project, however the exact implications of this would need to be reviewed on an annual basis in communication with the regulator.

### 9.4.3 GHG emissions intensity

A key driver for the Project is to achieve industry best practice in terms of the GHG emissions intensity of electricity produced by the Project in comparison to other coal fired power stations. The Project will achieve this objective through the implementation of ultra-supercritical electricity generation technology. Based on data provided to the Clean Energy Regulator, the lowest GHG emissions intensity for coal fired power generation in Australia is 0.82 tCO<sub>2</sub>-e/MWh achieved by Millmerran Power Station and Kogan Creek Power Station. Preliminary estimates indicate that the Project could achieve in the range of 0.79-0.81 tCO<sub>2</sub>-e/MWh, comparable to what could be considered best practice in terms of coal fired power generation. Figure 14 provides a pictorial summary of the GHG emissions intensity of electricity produced by coal fired power stations in Australia.

#### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final





### 9.4.3.1 GHG emissions reduction

Electricity generated by the Project has the potential to displace electricity with a higher GHG emissions intensity. For example, if electricity from the Project were used to replace electricity from Yallourn Power Station (a lignite fired power station located in Victoria, built progressively from the 1920s to the 1960s with an GHG emissions intensity of 1.29 tCO<sub>2</sub>-e/MWh) an annual reduction in GHG emissions of between 2,500 and 5,500 ktCO<sub>2</sub>-e could be achieved at a national level.

### 9.4.4 GHG mitigation and management

A range of options for Waratah to manage Project related GHG emissions include:

#### <u>General</u>

- Continuous improvement approach through ongoing monitoring and reporting GHG emissions and identifying opportunities to reduce GHG emissions
- Use of solar photovoltaic (PV) cells to supplement electricity requirements.

### <u>Coal</u>

- Power generation should be optimised to achieve the most efficient use of coal
- Consider using solar-power for lighting and other ancillary uses to reduce parasitic electricity demand and hence coal consumption.

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

#### <u>Diesel</u>

- Reduce mine equipment diesel consumption through equipment selection, load optimisation, route optimisation and production scheduling as well as reduced idle time
- Maintain equipment based on manufacturer/supplier guidelines and recommendations
- Reduce generator diesel consumption through selecting a flexible configuration that allows for electricity output to be adjusted in line with demand.

### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

## 10. CONCLUSIONS

Katestone Environmental Pty Ltd (Katestone) was commissioned by Waratah Coal Pty Ltd (Waratah) to complete an Air Quality Assessment of the Galilee Power Station Project (the Project). The Galilee Power Station Project is a proposed coal fired power station located 32 kilometres northwest of Alpha and adjacent to Waratah Coal's Galilee Coal Project in Central Queensland. The assessment is to support a Material Change of Use application for the Project.

The Project involves the construction and operation of a coal fired power station in Central Queensland. Waratah proposes to develop the coal fired power station in conjunction with mining operations. The ultimate capacity of the power station is 1,400 MW (comprised of  $2 \times 700 \text{ MW}$  units).

The air quality assessment has used a dispersion modelling approach. A site-specific meteorological data file has been generated using the TAPM and CALMET meteorological models. The meteorological modelling has accounted for local terrain and land use features of the surrounding region.

Emission rates and stack characteristics have been determined from the manufacturer's specifications, emission limits, and emissions information provided by Waratah. The CALPUFF dispersion model has been used to predict ground-level concentrations of nitrogen dioxide (NO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), particulates (PM<sub>10</sub> and PM<sub>2.5</sub>) and metals that will be generated by the Project. The results of the dispersion modelling have then been assessed against the relevant air quality criteria for the protection of human health and the environment.

Four load scenarios have been considered covering the full range of operations in order to ensure that worst-case potential impacts have been determine, namely:

- Overload operation
- 100% operation
- 60% operation
- 25% operation.

Diesel generators will be utilised during construction, these have also been assessed.

The air quality assessment shows that:

- Construction predicted ground-level concentrations of NO<sub>2</sub>, SO<sub>2</sub>, PM<sub>10</sub> and PM<sub>2.5</sub> comply with the air quality objectives at all sensitive receptors.
- Operations
  - Predicted ground-level concentrations of NO<sub>2</sub>, SO<sub>2</sub>, PM<sub>10</sub>, PM<sub>2.5</sub> and metals at sensitive receptors *comply* with the air quality objectives at all sensitive residential receptors.
  - Predicted ground-level concentrations of NO<sub>2</sub> and SO<sub>2</sub> at sensitive environmental receptors comply with the air quality objectives.

The potential for cumulative dust impacts was assessed and it was concluded that the Project's contribution to any cumulative dust impacts would be minor, relative to contributions from the adjacent open cut mines.

The assessment of the GHG and energy use associated with the Project shows that:

- GHG and energy use associated with the construction activities range from 1 to 7 ktCO<sub>2</sub>-e/y and 10 to 100 TJ/y, respectively.
- Ongoing operation of the Project is expected to result in 9,427 ktCO<sub>2</sub>-e/y for the 1,400 MW configuration.

### 11. **REFERENCES**

Bofinger ND, Best PR, Cliff DI and Stumer LJ (1986), "The oxidation of nitric oxide to nitrogen dioxide in power station plumes", Proceedings of the Seventh World Clean Air Congress, Sydney, 384-392.

Clean Energy Regulator (CER), 2018, Greenhouse and energy information for designated generation facilities. Available online: <u>http://www.cleanenergyregulator.gov.au/NGER/National%20greenhouse%20and%20energy</u>%20reporting%20data/electricity-sector-emissions-and-generation-data/electricity-sector-emissions-and-generation-data-2016-17

Commonwealth of Australia, 2007, National Greenhouse and Energy Reporting Act

Commonwealth of Australia, 2008 National Greenhouse and Energy Reporting (Measurement) Determination

Commonwealth of Australia, 2018. Quarterly Update of Australia's National Greenhouse Gas Inventory: September 2018a. Available online: <u>http://www.environment.gov.au/system/files/resources/e2b0a880-74b9-436b-9ddd-941a74d81fad/files/nggi-quarterly-update-june-2018.pdf</u>

Commonwealth of Australia, 2018b. State and Territory Greenhouse Gas Inventories 2016. Available online: <u>http://www.environment.gov.au/system/files/resources/a97b89a6-d103-4355-8044-</u> <u>3b1123e8bab6/files/state-territory-inventories-2016.pdf</u>

Department of Environment and Conservation, 2017, Approved Methods for the Modelling and Assessment of Air Pollutants in New South Wales, NSW Department of Environment and Conservation, NSW Government Gazette, Sydney.

Department of Environment and Energy (DEE), 2018. National Greenhouse Accounts (NGA) Factors, Australia National Greenhouse Accounts, Australian Government

Department of Environment and Heritage Protection, 2017a. Application requirements for activities with impacts to air

National Pollutant Inventory (NPI), 2016/17 Database, Available online at: <u>http://www.npi.gov.au/npi-data</u> (accessed December 2017)

Noise Mapping Australia, 2012. South Galilee Coal Project Air Quality Assessment. Prepared for MET Serve.

Pacific Environment Limited, 2013. Galilee Coal Project (Northern Export Facility) Air Quality Assessment. Prepared for Waratah Coal.

Queensland Government 1994. Environmental Protection Act.

Queensland Government 2008. Environmental Protection (Air) Policy 2008.

TCEQ, 2009. Texas Commission on Environmental Quality Effects Screening Levels 2009

World Resources Institute/World Business Council for Sustainable Development, 2004, The Greenhouse Gas Protocol – A Corporate Accounting and Reporting Standard Revised Edition March 2004. Available online: <u>http://www.ghgprotocol.org/corporate-standard.</u>

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final




















































































# APPENDIX A METEOROLOGICAL AND DISPERSION MODELLING METHODOLOGY

The meteorological data for this study was generated by TAPM and CALMET, for use in the CALPUFF dispersion model. Details of the model configurations are supplied in the following sections.

## A1 TAPM METEOROLOGY

The meteorological model, TAPM (The Air Pollution Model) Version 4.0.5, was developed by the CSIRO and has been validated by the CSIRO, Katestone and others for many locations in Australia, in southeast Asia and in North America (see www.cmar.csiro.au/research/tapm for more details on the model and validation results from the CSIRO). Katestone has used the TAPM model throughout Australia and has performed well for simulating regional winds patterns. TAPM has proven to be a useful model for simulating meteorology in locations where monitoring data is unavailable.

TAPM requires synoptic meteorological information for the region surrounding the Project. This information is generated by a global model similar to the large-scale models used to forecast the weather. The data are supplied on a grid resolution of approximately 75 km, and at elevations of 100 metres to five kilometres above the ground. TAPM uses this synoptic information, along with specific details of the location such as surrounding terrain, land use, soil moisture content and soil type to simulate the meteorology of a region as well as at a specific location.

TAPM resolves local terrain and land use features that may influence local meteorology and generates a meteorological dataset that is representative of site-specific geographic conditions. A year of synoptic data must be selected as input for TAPM. The selection of this year should be such that the year is representative of typical meteorological conditions (and therefore is not necessarily the most recent year of available data) and whether monitoring data is available for the time period to validate the output dataset. In addition, Katestone's experience elsewhere in Central Queensland suggests that variability of dispersion meteorological conditions from year to year are unlikely to change the outcome of the air quality assessment. For this study, the period January to December 2012 was modelled as meteorological data for the site was installed for a time during this period.

TAPM was configured as follows:

- 70 x 70 grid point domain with an outer grid of 20 kilometres and nesting grids of 10 kilometres, 3 kilometres
- Grid centred near the site of the Project at latitude -23°30' and longitude 146°30'
- Geoscience Australia 9-second digital elevation model terrain data
- 25 vertical grid levels.

### A1.1 CALMET meteorological modelling

CALMET is an advanced non-steady-state diagnostic 3D meteorological model with micro-meteorological modules for overwater and overland boundary layers. The model is the meteorological pre-processor for the CALPUFF modelling system. CALMET is capable of reading hourly meteorological data as data assimilation from multiple sites within the modelling domain; it can also be initialised with the gridded three-dimensional prognostic output from other meteorological models such as TAPM. This can improve dispersion model output, particularly over complex terrain as the near surface meteorological conditions are calculated for each grid point.

CALMET (version 6.5.0) was used to simulate meteorological conditions in the study region. The CALMET simulation was initialised with the gridded TAPM three-dimensional wind field data from the innermost grid (3 km resolution). CALMET treats the prognostic model output as the initial guess field for the CALMET diagnostic model

### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

wind fields. CALMET then adjusts the initial guess field for the kinematic effects of terrain, slope flows, blocking effects and 3-dimensional divergence minimisation.

Key features of CALMET used to generate the wind fields are as follows:

- Domain area of 90 by 108 at 1 km spacing
- 366 days modelled (1 January to 31 December 2012)
- Prognostic wind fields input as MM5/3D.dat for "initial guess" field only (as generated from TAPM)
- Gridded cloud cover from prognostic relative humidity at all levels
- No Froude number adjustment or kinematic effects
- No extrapolation of surface wind observations to upper layers
- Terrain radius of influence set to 15 km
- All other parameters set to default.

The geophysical data (land use and terrain heights) were generated to be consistent with the geophysical dataset for TAPM.

# A2 CALPUFF DISPERSION MODELLING

CALPUFF simulates the dispersion of air pollutants to predict ground-level concentration and deposition rates across a network of receptors spaced at regular intervals, and at identified discrete locations. CALPUFF is a nonsteady-state Lagrangian Gaussian puff model containing parameterisations for complex terrain effects, overwater transport, coastal interaction effects, building downwash, wet and dry removal, and simple chemical transformation. CALPUFF employs the 3D meteorological fields generated from the CALMET model by simulating the effects of time and space varying meteorological conditions on pollutant transport, transformation and removal. CALPUFF takes into account the geophysical features of the study area that affects dispersion of pollutants and ground-level concentrations of those pollutants in identified regions of interest. CALPUFF contains algorithms that can resolve near-source effects such as building downwash, transitional plume rise, partial plume penetration, sub-grid scale terrain interactions, as well as the long-range effects of removal, transformation, vertical wind shear, overwater transport and coastal interactions. Emission sources can be characterised as arbitrarily-varying point, area, volume and lines or any combination of those sources within the modelling domain.

Key features of CALPUFF used to simulate dispersion:

- Domain area of 90 by 100 grids at 1 km spacing, equivalent to the domain defined in CALMET, with a nesting factor of 2
- 365 days modelled (1 January 2012 to 31 December 2012)
- Gridded 3D hourly-varying meteorological conditions generated by CALMET
- Partial plume path adjustment for terrain modelled
- Dispersion coefficients calculated internally from sigma v and sigma w using micrometeorological variables
- Building wakes were incorporated using the PRIME algorithm
- Stack tip downwash, transitional plume rise and PDF used for dispersion under convective conditions.

All other options set to default.

### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

### **DISCRETE RECEPTOR RESULTS** APPENDIX B

|    | -                                                     | Maximum 1-hour NO₂ (μg/m³) |      |      |      |              |           |         |      |  |  |
|----|-------------------------------------------------------|----------------------------|------|------|------|--------------|-----------|---------|------|--|--|
|    | Name                                                  |                            | Pro  | ject |      | Pro          | ject plus | backgro | und  |  |  |
|    |                                                       | Overl<br>oad               | 100% | 60%  | 25%  | Overl<br>oad | 100%      | 60%     | 25%  |  |  |
| 0  | Dwelling                                              | 16.5                       | 13.9 | 14.2 | 6.0  | 51.4         | 48.8      | 49.1    | 40.9 |  |  |
| 1  | Dwelling                                              | 17.1                       | 16.7 | 12.9 | 7.7  | 52.0         | 51.6      | 47.8    | 42.6 |  |  |
| 2  | Dwelling                                              | 9.8                        | 8.7  | 5.1  | 2.7  | 44.7         | 43.6      | 40.0    | 37.6 |  |  |
| 5  | Accommodation Village -<br>Alpha Coal Project         | 24.7                       | 23.9 | 16.9 | 9.6  | 59.6         | 58.8      | 51.8    | 44.5 |  |  |
| 6  | Accommodation Village -<br>South Galilee Coal Project | 20.0                       | 44.8 | 55.9 | 14.5 | 54.9         | 79.7      | 90.8    | 49.4 |  |  |
| 7  | Airfield                                              | 24.1                       | 21.7 | 14.4 | 6.4  | 59.0         | 56.6      | 49.3    | 41.3 |  |  |
| 8  | Alpha                                                 | 15.3                       | 13.8 | 9.9  | 12.8 | 50.2         | 48.7      | 44.8    | 47.7 |  |  |
| 9  | Alpha Coal Bulk Sample                                | 28.5                       | 30.4 | 28.7 | 27.4 | 63.4         | 65.3      | 63.6    | 62.3 |  |  |
| 10 | Beaufort Homestead                                    | 13.1                       | 9.9  | 8.1  | 3.6  | 48.0         | 44.8      | 43.0    | 38.5 |  |  |
| 11 | Bedford Homestead                                     | 12.3                       | 13.2 | 10.0 | 27.4 | 47.2         | 48.1      | 44.9    | 62.3 |  |  |
| 12 | Betanga Homestead                                     | 16.9                       | 14.0 | 17.5 | 11.8 | 51.8         | 48.9      | 52.4    | 46.7 |  |  |
| 13 | Blairgowrie                                           | 15.6                       | 14.9 | 11.6 | 8.1  | 50.5         | 49.8      | 46.5    | 43.0 |  |  |
| 14 | Bonanza Homestead                                     | 33.3                       | 24.3 | 11.1 | 14.8 | 68.2         | 59.2      | 46.0    | 49.7 |  |  |
| 16 | Burgoyne Homestead                                    | 13.2                       | 11.4 | 14.6 | 4.0  | 48.1         | 46.3      | 49.5    | 38.9 |  |  |
| 17 | Burtle Homestead                                      | 18.9                       | 17.0 | 9.1  | 4.8  | 53.8         | 51.9      | 44.0    | 39.7 |  |  |
| 18 | Carinya Homestead                                     | 17.3                       | 17.5 | 17.4 | 4.2  | 52.2         | 52.4      | 52.3    | 39.1 |  |  |
| 19 | Cavendish Homestead <sup>a</sup>                      | 20.5                       | 19.4 | 24.3 | 9.7  | 55.4         | 54.3      | 59.2    | 44.6 |  |  |
| 20 | Colorado Homestead                                    | 34.8                       | 24.3 | 13.9 | 12.2 | 69.7         | 59.2      | 48.8    | 47.1 |  |  |
| 21 | Corn Top Homestead <sup>a</sup>                       | 24.5                       | 16.3 | 9.0  | 23.8 | 59.4         | 51.2      | 43.9    | 58.7 |  |  |
| 22 | Creek Farm Homestead                                  | 23.0                       | 17.6 | 11.3 | 5.3  | 57.9         | 52.5      | 46.2    | 40.2 |  |  |
| 25 | Dwelling                                              | 16.8                       | 12.2 | 10.2 | 5.7  | 51.7         | 47.1      | 45.1    | 40.6 |  |  |
| 26 | Dwelling                                              | 14.0                       | 16.3 | 11.5 | 10.3 | 48.9         | 51.2      | 46.4    | 45.2 |  |  |
| 27 | Dwelling                                              | 17.3                       | 16.5 | 13.0 | 8.3  | 52.2         | 51.4      | 47.9    | 43.2 |  |  |
| 28 | Dwelling                                              | 16.2                       | 14.6 | 13.0 | 5.2  | 51.1         | 49.5      | 47.9    | 40.1 |  |  |
| 29 | Dwelling                                              | 20.9                       | 16.1 | 9.9  | 10.9 | 55.8         | 51.0      | 44.8    | 45.8 |  |  |
| 30 | Dwelling                                              | 13.7                       | 18.3 | 22.7 | 8.9  | 48.6         | 53.2      | 57.6    | 43.8 |  |  |
| 31 | Dwelling                                              | 18.6                       | 14.1 | 13.4 | 6.5  | 53.5         | 49.0      | 48.3    | 41.4 |  |  |
| 32 | Dwelling                                              | 12.6                       | 12.9 | 16.3 | 14.0 | 47.5         | 47.8      | 51.2    | 48.9 |  |  |
| 33 | Dwelling                                              | 12.6                       | 12.7 | 16.4 | 9.5  | 47.5         | 47.6      | 51.3    | 44.4 |  |  |
| 34 | Dwelling                                              | 18.7                       | 16.1 | 7.8  | 10.9 | 53.6         | 51.0      | 42.7    | 45.8 |  |  |
| 35 | Dwelling                                              | 19.1                       | 13.4 | 8.9  | 11.8 | 54.0         | 48.3      | 43.8    | 46.7 |  |  |
| 36 | Dwelling                                              | 24.4                       | 30.7 | 7.8  | 6.5  | 59.3         | 65.6      | 42.7    | 41.4 |  |  |
| 37 | Dwelling                                              | 14.3                       | 15.6 | 14.0 | 14.7 | 49.2         | 50.5      | 48.9    | 49.6 |  |  |
| 38 | Dwelling?                                             | 14.6                       | 14.5 | 12.1 | 10.0 | 49.5         | 49.4      | 47.0    | 44.9 |  |  |

Table B1 1,400 MW - Predicted maximum 1-hour concentrations of NO<sub>2</sub> due to Project in isolation and with background

### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment - Final

|    |                                           | Maximum 1-hour NO₂ (μg/m³) |      |      |      |              |           |         |      |  |  |
|----|-------------------------------------------|----------------------------|------|------|------|--------------|-----------|---------|------|--|--|
| п  | Name                                      |                            | Pro  | ject |      | Pro          | ject plus | backgro | und  |  |  |
|    | Nanie                                     | Overl<br>oad               | 100% | 60%  | 25%  | Overl<br>oad | 100%      | 60%     | 25%  |  |  |
| 39 | Edwinstowe Homestead                      | 27.6                       | 21.6 | 11.7 | 8.1  | 62.5         | 56.5      | 46.6    | 43.0 |  |  |
| 40 | Elphin Homestead                          | 17.4                       | 32.1 | 13.2 | 9.7  | 52.3         | 67.0      | 48.1    | 44.6 |  |  |
| 41 | Eulimbie Homestead                        | 19.6                       | 16.1 | 11.3 | 5.9  | 54.5         | 51.0      | 46.2    | 40.8 |  |  |
| 42 | Eureka Homestead                          | 69.4                       | 52.0 | 45.7 | 14.5 | 104.3        | 86.9      | 80.6    | 49.4 |  |  |
| 44 | Gadwell Homestead                         | 30.4                       | 26.1 | 8.8  | 16.6 | 65.3         | 61.0      | 43.7    | 51.5 |  |  |
| 46 | Glen Innes Homestead <sup>a</sup>         | 44.0                       | 41.3 | 29.5 | 16.4 | 78.9         | 76.2      | 64.4    | 51.3 |  |  |
| 47 | Hazelbrook Homestead                      | 19.7                       | 14.6 | 7.5  | 8.3  | 54.6         | 49.5      | 42.4    | 43.2 |  |  |
| 49 | Hobartville Homestead <sup>b</sup>        | 26.3                       | 28.4 | 34.1 | 20.0 | 61.2         | 63.3      | 69.0    | 54.9 |  |  |
| 50 | Inverurie Homestead                       | 23.8                       | 36.4 | 13.9 | 14.4 | 58.7         | 71.3      | 48.8    | 49.3 |  |  |
| 51 | Islay Plains Homestead                    | 5.3                        | 5.1  | 3.8  | 4.6  | 40.2         | 40.0      | 38.7    | 39.5 |  |  |
| 52 | Jericho                                   | 19.6                       | 15.1 | 13.4 | 6.2  | 54.5         | 50.0      | 48.3    | 41.1 |  |  |
| 53 | Jordan Avon Homestead                     | 27.6                       | 25.9 | 16.3 | 10.8 | 62.5         | 60.8      | 51.2    | 45.7 |  |  |
| 54 | Kalbar Homestead                          | 8.3                        | 7.0  | 4.3  | 2.5  | 43.2         | 41.9      | 39.2    | 37.4 |  |  |
| 55 | Kerand Homestead                          | 7.5                        | 6.5  | 3.9  | 1.9  | 42.4         | 41.4      | 38.8    | 36.8 |  |  |
| 56 | Kia Ora Homestead <sup>a</sup>            | 43.4                       | 35.6 | 24.8 | 24.1 | 78.3         | 70.5      | 59.7    | 59.0 |  |  |
| 57 | Lambton Meadows<br>Homestead <sup>a</sup> | 51.1                       | 37.0 | 25.7 | 14.6 | 86.0         | 71.9      | 60.6    | 49.5 |  |  |
| 59 | Locharnoch                                | 31.0                       | 27.9 | 16.8 | 7.2  | 65.9         | 62.8      | 51.7    | 42.1 |  |  |
| 60 | Melton Homestead                          | 13.7                       | 9.3  | 5.6  | 4.4  | 48.6         | 44.2      | 40.5    | 39.3 |  |  |
| 61 | Mentmore Homestead                        | 30.6                       | 27.6 | 19.5 | 13.8 | 65.5         | 62.5      | 54.4    | 48.7 |  |  |
| 62 | Milangavla                                | 20.7                       | 23.0 | 40.1 | 10.8 | 55.6         | 57.9      | 75.0    | 45.7 |  |  |
| 63 | Monklands <sup>a</sup>                    | 98.9                       | 87.0 | 57.1 | 32.9 | 133.8        | 121.9     | 92.0    | 67.8 |  |  |
| 64 | Moonstone Homestead                       | 12.7                       | 19.1 | 14.5 | 5.9  | 47.6         | 54.0      | 49.4    | 40.8 |  |  |
| 65 | Mossvale Homestead                        | 41.3                       | 32.3 | 8.5  | 12.7 | 76.2         | 67.2      | 43.4    | 47.6 |  |  |
| 67 | Oakleigh Homestead                        | 38.1                       | 41.9 | 18.3 | 6.7  | 73.0         | 76.8      | 53.2    | 41.6 |  |  |
| 68 | Quarry?                                   | 21.6                       | 21.6 | 15.2 | 6.9  | 56.5         | 56.5      | 50.1    | 41.8 |  |  |
| 69 | Racecourse                                | 21.1                       | 17.7 | 13.1 | 6.1  | 56.0         | 52.6      | 48.0    | 41.0 |  |  |
| 70 | Racecourse                                | 12.0                       | 11.4 | 11.1 | 13.0 | 46.9         | 46.3      | 46.0    | 47.9 |  |  |
| 72 | Rosedale Homestead                        | 25.0                       | 13.4 | 11.7 | 9.1  | 59.9         | 48.3      | 46.6    | 44.0 |  |  |
| 73 | Rosefield Homestead                       | 31.3                       | 34.1 | 24.4 | 17.0 | 66.2         | 69.0      | 59.3    | 51.9 |  |  |
| 74 | Salt Bush Homestead                       | 28.4                       | 23.0 | 22.4 | 21.4 | 63.3         | 57.9      | 57.3    | 56.3 |  |  |
| 75 | Speculation Homestead                     | 13.9                       | 25.3 | 14.1 | 11.0 | 48.8         | 60.2      | 49.0    | 45.9 |  |  |
| 76 | Spring Creek <sup>a</sup>                 | 25.0                       | 25.8 | 24.9 | 13.5 | 59.9         | 60.7      | 59.8    | 48.4 |  |  |
| 79 | Surbiton Homestead                        | 10.0                       | 10.8 | 12.1 | 5.5  | 44.9         | 45.7      | 47.0    | 40.4 |  |  |
| 80 | Surbiton Station                          | 18.6                       | 15.0 | 9.7  | 10.3 | 53.5         | 49.9      | 44.6    | 45.2 |  |  |
| 81 | The Grove Homestead                       | 23.4                       | 21.6 | 22.9 | 5.1  | 58.3         | 56.5      | 57.8    | 40.0 |  |  |
| 82 | Toarbee                                   | 26.2                       | 35.9 | 25.2 | 19.6 | 61.1         | 70.8      | 60.1    | 54.5 |  |  |
| 84 | Tressillian Homestead                     | 17.8                       | 16.3 | 11.3 | 7.2  | 52.7         | 51.2      | 46.2    | 42.1 |  |  |
| 85 | Villafield Homestead                      | 39.1                       | 30.3 | 12.2 | 16.6 | 74.0         | 65.2      | 47.1    | 51.5 |  |  |
| 86 | Wendouree Homestead <sup>b</sup>          | 19.8                       | 18.1 | 15.8 | 23.2 | 54.7         | 53.0      | 50.7    | 58.1 |  |  |
| 87 | Woodbrook Homestead                       | 6.3                        | 5.5  | 2.6  | 1.4  | 41.2         | 40.4      | 37.5    | 36.3 |  |  |
| 88 | Wycheproof Homestead                      | 17.4                       | 20.3 | 13.9 | 3.0  | 52.3         | 55.2      | 48.8    | 37.9 |  |  |

| ID       |                     |              | Maximum 1-hour NO₂ (μg/m³) |       |      |                         |       |       |       |  |  |  |
|----------|---------------------|--------------|----------------------------|-------|------|-------------------------|-------|-------|-------|--|--|--|
|          | Name                |              | Pro                        | ject  |      | Project plus background |       |       |       |  |  |  |
|          |                     | Overl<br>oad | 100%                       | 60%   | 25%  | Overl<br>oad            | 100%  | 60%   | 25%   |  |  |  |
| 89       | Zeta Homestead      | 12.3         | 17.0                       | 13.6  | 10.5 | 47.2                    | 51.9  | 48.5  | 45.4  |  |  |  |
| -        | Workers' Camp       | 179.8        | 174.0                      | 111.4 | 73.4 | 214.7                   | 208.9 | 146.3 | 108.3 |  |  |  |
|          | Background included | -            | -                          | -     | -    | 35                      | 35    | 35    | 35    |  |  |  |
|          | Objective           | -            | -                          | -     | -    | 250                     | 250   | 250   | 250   |  |  |  |
| Table no | Dte:                | hah          |                            |       |      |                         |       |       |       |  |  |  |

These receptors will be acquired by Waratah

<sup>b</sup> These receptors will be acquired by Alpha Coal

| Table B2 | 1,400 MW - Predicted annual average ground-level concentrations of NO2 due to |
|----------|-------------------------------------------------------------------------------|
|          | Project in isolation and with background                                      |

|    |                                                       | Annual NO₂ (µg/m³) |      |      |      |              |           |         |      |  |  |
|----|-------------------------------------------------------|--------------------|------|------|------|--------------|-----------|---------|------|--|--|
| ID | Name                                                  |                    | Pro  | ject |      | Pro          | ject plus | backgro | und  |  |  |
|    |                                                       | Overl<br>oad       | 100% | 60%  | 25%  | Overl<br>oad | 100%      | 60%     | 25%  |  |  |
| 0  | Dwelling                                              | 0.08               | 0.08 | 0.05 | 0.03 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 1  | Dwelling                                              | 0.13               | 0.12 | 0.08 | 0.05 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 2  | Dwelling                                              | 0.04               | 0.03 | 0.02 | 0.01 | 10.7         | 10.7      | 10.7    | 10.7 |  |  |
| 5  | Accommodation Village -<br>Alpha Coal Project         | 0.08               | 0.07 | 0.05 | 0.03 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 6  | Accommodation Village -<br>South Galilee Coal Project | 0.10               | 0.10 | 0.08 | 0.05 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 7  | Airfield                                              | 0.15               | 0.13 | 0.09 | 0.05 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 8  | Alpha                                                 | 0.06               | 0.05 | 0.04 | 0.02 | 10.8         | 10.8      | 10.7    | 10.7 |  |  |
| 9  | Alpha Coal Bulk Sample                                | 0.15               | 0.15 | 0.11 | 0.08 | 10.9         | 10.8      | 10.8    | 10.8 |  |  |
| 10 | Beaufort Homestead                                    | 0.03               | 0.02 | 0.02 | 0.01 | 10.7         | 10.7      | 10.7    | 10.7 |  |  |
| 11 | Bedford Homestead                                     | 0.06               | 0.06 | 0.04 | 0.03 | 10.8         | 10.8      | 10.7    | 10.7 |  |  |
| 12 | Betanga Homestead                                     | 0.13               | 0.12 | 0.09 | 0.07 | 10.8         | 10.8      | 10.8    | 10.8 |  |  |
| 13 | Blairgowrie                                           | 0.07               | 0.07 | 0.05 | 0.03 | 10.8         | 10.8      | 10.7    | 10.7 |  |  |
| 14 | Bonanza Homestead                                     | 0.09               | 0.08 | 0.05 | 0.03 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 16 | Burgoyne Homestead                                    | 0.10               | 0.09 | 0.07 | 0.04 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 17 | Burtle Homestead                                      | 0.07               | 0.06 | 0.04 | 0.02 | 10.8         | 10.8      | 10.7    | 10.7 |  |  |
| 18 | Carinya Homestead                                     | 0.03               | 0.02 | 0.02 | 0.01 | 10.7         | 10.7      | 10.7    | 10.7 |  |  |
| 19 | Cavendish Homestead <sup>a</sup>                      | 0.26               | 0.25 | 0.19 | 0.11 | 11.0         | 10.9      | 10.9    | 10.8 |  |  |
| 20 | Colorado Homestead                                    | 0.12               | 0.11 | 0.07 | 0.04 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 21 | Corn Top Homestead <sup>a</sup>                       | 0.14               | 0.12 | 0.09 | 0.07 | 10.8         | 10.8      | 10.8    | 10.8 |  |  |
| 22 | Creek Farm Homestead                                  | 0.09               | 0.09 | 0.06 | 0.03 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 25 | Dwelling                                              | 0.12               | 0.11 | 0.07 | 0.04 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 26 | Dwelling                                              | 0.13               | 0.12 | 0.08 | 0.05 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 27 | Dwelling                                              | 0.14               | 0.12 | 0.08 | 0.05 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 28 | Dwelling                                              | 0.10               | 0.09 | 0.07 | 0.04 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |
| 29 | Dwelling                                              | 0.14               | 0.13 | 0.09 | 0.05 | 10.8         | 10.8      | 10.8    | 10.7 |  |  |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

| Annual NO₂ (μg/m³) |                                           |              |      |      |      |              |           |         |      |
|--------------------|-------------------------------------------|--------------|------|------|------|--------------|-----------|---------|------|
| חו                 | Namo                                      |              | Pro  | ject |      | Pro          | ject plus | backgro | und  |
|                    | Name                                      | Overl<br>oad | 100% | 60%  | 25%  | Overl<br>oad | 100%      | 60%     | 25%  |
| 30                 | Dwelling                                  | 0.10         | 0.09 | 0.06 | 0.03 | 10.8         | 10.8      | 10.8    | 10.7 |
| 31                 | Dwelling                                  | 0.13         | 0.11 | 0.08 | 0.04 | 10.8         | 10.8      | 10.8    | 10.7 |
| 32                 | Dwelling                                  | 0.06         | 0.06 | 0.04 | 0.03 | 10.8         | 10.8      | 10.7    | 10.7 |
| 33                 | Dwelling                                  | 0.07         | 0.06 | 0.04 | 0.02 | 10.8         | 10.8      | 10.7    | 10.7 |
| 34                 | Dwelling                                  | 0.05         | 0.04 | 0.03 | 0.02 | 10.7         | 10.7      | 10.7    | 10.7 |
| 35                 | Dwelling                                  | 0.05         | 0.04 | 0.03 | 0.02 | 10.7         | 10.7      | 10.7    | 10.7 |
| 36                 | Dwelling                                  | 0.05         | 0.04 | 0.03 | 0.02 | 10.7         | 10.7      | 10.7    | 10.7 |
| 37                 | Dwelling                                  | 0.04         | 0.04 | 0.03 | 0.02 | 10.7         | 10.7      | 10.7    | 10.7 |
| 38                 | Dwelling?                                 | 0.04         | 0.04 | 0.03 | 0.02 | 10.7         | 10.7      | 10.7    | 10.7 |
| 39                 | Edwinstowe Homestead                      | 0.11         | 0.10 | 0.07 | 0.04 | 10.8         | 10.8      | 10.8    | 10.7 |
| 40                 | Elphin Homestead                          | 0.05         | 0.04 | 0.03 | 0.02 | 10.7         | 10.7      | 10.7    | 10.7 |
| 41                 | Eulimbie Homestead                        | 0.03         | 0.03 | 0.02 | 0.01 | 10.7         | 10.7      | 10.7    | 10.7 |
| 42                 | Eureka Homestead                          | 0.19         | 0.18 | 0.12 | 0.08 | 10.9         | 10.9      | 10.8    | 10.8 |
| 44                 | Gadwell Homestead                         | 0.06         | 0.05 | 0.04 | 0.02 | 10.8         | 10.8      | 10.7    | 10.7 |
| 46                 | Glen Innes Homestead <sup>a</sup>         | 0.51         | 0.47 | 0.36 | 0.20 | 11.2         | 11.2      | 11.1    | 10.9 |
| 47                 | Hazelbrook Homestead                      | 0.05         | 0.05 | 0.03 | 0.02 | 10.8         | 10.7      | 10.7    | 10.7 |
| 49                 | Hobartville Homestead <sup>b</sup>        | 0.22         | 0.21 | 0.17 | 0.11 | 10.9         | 10.9      | 10.9    | 10.8 |
| 50                 | Inverurie Homestead                       | 0.17         | 0.16 | 0.11 | 0.07 | 10.9         | 10.9      | 10.8    | 10.8 |
| 51                 | Islay Plains Homestead                    | 0.02         | 0.02 | 0.01 | 0.01 | 10.7         | 10.7      | 10.7    | 10.7 |
| 52                 | Jericho                                   | 0.13         | 0.12 | 0.08 | 0.05 | 10.8         | 10.8      | 10.8    | 10.7 |
| 53                 | Jordan Avon Homestead                     | 0.18         | 0.16 | 0.11 | 0.06 | 10.9         | 10.9      | 10.8    | 10.8 |
| 54                 | Kalbar Homestead                          | 0.03         | 0.03 | 0.02 | 0.01 | 10.7         | 10.7      | 10.7    | 10.7 |
| 55                 | Kerand Homestead                          | 0.02         | 0.02 | 0.01 | 0.01 | 10.7         | 10.7      | 10.7    | 10.7 |
| 56                 | Kia Ora Homestead <sup>a</sup>            | 0.40         | 0.38 | 0.29 | 0.17 | 11.1         | 11.1      | 11.0    | 10.9 |
| 57                 | Lambton Meadows<br>Homestead <sup>a</sup> | 0.21         | 0.19 | 0.15 | 0.08 | 10.9         | 10.9      | 10.8    | 10.8 |
| 59                 | Locharnoch                                | 0.14         | 0.13 | 0.10 | 0.05 | 10.8         | 10.8      | 10.8    | 10.7 |
| 60                 | Melton Homestead                          | 0.03         | 0.02 | 0.02 | 0.01 | 10.7         | 10.7      | 10.7    | 10.7 |
| 61                 | Mentmore Homestead                        | 0.08         | 0.07 | 0.05 | 0.03 | 10.8         | 10.8      | 10.8    | 10.7 |
| 62                 | Milangavla                                | 0.20         | 0.18 | 0.13 | 0.07 | 10.9         | 10.9      | 10.8    | 10.8 |
| 63                 | Monklands <sup>a</sup>                    | 0.87         | 0.88 | 0.88 | 0.69 | 11.6         | 11.6      | 11.6    | 11.4 |
| 64                 | Moonstone Homestead                       | 0.04         | 0.04 | 0.03 | 0.02 | 10.7         | 10.7      | 10.7    | 10.7 |
| 65                 | Mossvale Homestead                        | 0.06         | 0.05 | 0.03 | 0.02 | 10.8         | 10.7      | 10.7    | 10.7 |
| 67                 | Oakleigh Homestead                        | 0.14         | 0.13 | 0.10 | 0.06 | 10.8         | 10.8      | 10.8    | 10.8 |
| 68                 | Quarry?                                   | 0.14         | 0.13 | 0.09 | 0.05 | 10.8         | 10.8      | 10.8    | 10.7 |
| 69                 | Racecourse                                | 0.14         | 0.12 | 0.09 | 0.05 | 10.8         | 10.8      | 10.8    | 10.7 |
| 70                 | Racecourse                                | 0.07         | 0.07 | 0.05 | 0.03 | 10.8         | 10.8      | 10.7    | 10.7 |
| 72                 | Rosedale Homestead                        | 0.08         | 0.07 | 0.05 | 0.03 | 10.8         | 10.8      | 10.7    | 10.7 |
| 73                 | Rosefield Homestead                       | 0.19         | 0.17 | 0.12 | 0.07 | 10.9         | 10.9      | 10.8    | 10.8 |
| 74                 | Salt Bush Homestead                       | 0.15         | 0.14 | 0.10 | 0.06 | 10.9         | 10.8      | 10.8    | 10.8 |
| 75                 | Speculation Homestead                     | 0.07         | 0.07 | 0.06 | 0.04 | 10.8         | 10.8      | 10.8    | 10.7 |
| 76                 | Spring Creek <sup>a</sup>                 | 0.25         | 0.23 | 0.16 | 0.09 | 10.9         | 10.9      | 10.9    | 10.8 |

|                                                             | -                                |              |      | A    | nnual N | O₂ (µg/m                | <sup>3</sup> ) |      |      |
|-------------------------------------------------------------|----------------------------------|--------------|------|------|---------|-------------------------|----------------|------|------|
| D                                                           | Name                             |              | Pro  | ject |         | Project plus background |                |      |      |
|                                                             |                                  | Overl<br>oad | 100% | 60%  | 25%     | Overl<br>oad            | 100%           | 60%  | 25%  |
| 79                                                          | Surbiton Homestead               | 0.05         | 0.04 | 0.03 | 0.02    | 10.7                    | 10.7           | 10.7 | 10.7 |
| 80                                                          | Surbiton Station                 | 0.04         | 0.03 | 0.02 | 0.01    | 10.7                    | 10.7           | 10.7 | 10.7 |
| 81                                                          | The Grove Homestead              | 0.05         | 0.05 | 0.03 | 0.02    | 10.8                    | 10.7           | 10.7 | 10.7 |
| 82                                                          | Toarbee                          | 0.13         | 0.12 | 0.08 | 0.05    | 10.8                    | 10.8           | 10.8 | 10.7 |
| 84                                                          | Tressillian Homestead            | 0.08         | 0.07 | 0.05 | 0.03    | 10.8                    | 10.8           | 10.8 | 10.7 |
| 85                                                          | Villafield Homestead             | 0.09         | 0.08 | 0.06 | 0.03    | 10.8                    | 10.8           | 10.8 | 10.7 |
| 86                                                          | Wendouree Homestead <sup>b</sup> | 0.11         | 0.11 | 0.08 | 0.05    | 10.8                    | 10.8           | 10.8 | 10.8 |
| 87                                                          | Woodbrook Homestead              | 0.02         | 0.02 | 0.01 | 0.01    | 10.7                    | 10.7           | 10.7 | 10.7 |
| 88                                                          | Wycheproof Homestead             | 0.02         | 0.02 | 0.01 | 0.01    | 10.7                    | 10.7           | 10.7 | 10.7 |
| 89                                                          | Zeta Homestead                   | 0.03         | 0.03 | 0.03 | 0.01    | 10.7                    | 10.7           | 10.7 | 10.7 |
| -                                                           | Workers' Camp                    | 0.41         | 0.41 | 0.39 | 0.24    | 11.1                    | 11.1           | 11.1 | 10.9 |
|                                                             | Background included              | -            | -    | -    | -       | 11                      | 11             | 11   | 11   |
|                                                             | Objective                        | -            | -    | -    | -       | 62                      | 62             | 62   | 62   |
| Table note:   a These receptors will be acquired by Waratah |                                  |              |      |      |         |                         |                |      |      |

<sup>b</sup> These receptors will be acquired by Alpha Coal

### 1,400 MW – Predicted maximum 1-hour average ground-level concentrations of $SO_2$ due to Project in isolation and with background Table B3

|    |                                                       |              |      | 1    | l-hour SC | Ω₂ (µg/m³               | )    |      |      |
|----|-------------------------------------------------------|--------------|------|------|-----------|-------------------------|------|------|------|
| ID | Name                                                  |              | Pro  | ject |           | Project plus background |      |      |      |
|    |                                                       | Overl<br>oad | 100% | 60%  | 25%       | Overl<br>oad            | 100% | 60%  | 25%  |
| 0  | Dwelling                                              | 7.0          | 5.9  | 6.0  | 2.5       | 18.4                    | 17.3 | 17.4 | 13.9 |
| 1  | Dwelling                                              | 7.2          | 7.1  | 5.5  | 3.3       | 18.6                    | 18.5 | 16.9 | 14.7 |
| 2  | Dwelling                                              | 4.1          | 3.7  | 2.2  | 1.1       | 15.5                    | 15.1 | 13.6 | 12.5 |
| 5  | Accommodation Village -<br>Alpha Coal Project         | 10.5         | 10.1 | 7.2  | 4.1       | 21.9                    | 21.5 | 18.6 | 15.5 |
| 6  | Accommodation Village -<br>South Galilee Coal Project | 8.5          | 19.0 | 23.7 | 6.1       | 19.9                    | 30.4 | 35.1 | 17.5 |
| 7  | Airfield                                              | 10.2         | 9.2  | 6.1  | 2.7       | 21.6                    | 20.6 | 17.5 | 14.1 |
| 8  | Alpha                                                 | 6.5          | 5.9  | 4.2  | 5.4       | 17.9                    | 17.3 | 15.6 | 16.8 |
| 9  | Alpha Coal Bulk Sample                                | 12.1         | 12.9 | 12.2 | 11.6      | 23.5                    | 24.3 | 23.6 | 23.0 |
| 10 | Beaufort Homestead                                    | 5.5          | 4.2  | 3.4  | 1.5       | 16.9                    | 15.6 | 14.8 | 12.9 |
| 11 | Bedford Homestead                                     | 5.2          | 5.6  | 4.2  | 11.6      | 16.6                    | 17.0 | 15.6 | 23.0 |
| 12 | Betanga Homestead                                     | 7.2          | 5.9  | 7.4  | 5.0       | 18.6                    | 17.3 | 18.8 | 16.4 |
| 13 | Blairgowrie                                           | 6.6          | 6.3  | 4.9  | 3.4       | 18.0                    | 17.7 | 16.3 | 14.8 |
| 14 | Bonanza Homestead                                     | 14.1         | 10.3 | 4.7  | 6.3       | 25.5                    | 21.7 | 16.1 | 17.7 |
| 16 | Burgoyne Homestead                                    | 5.6          | 4.9  | 6.2  | 1.7       | 17.0                    | 16.3 | 17.6 | 13.1 |
| 17 | Burtle Homestead                                      | 8.0          | 7.2  | 3.9  | 2.0       | 19.4                    | 18.6 | 15.3 | 13.4 |
| 18 | Carinya Homestead                                     | 7.3          | 7.4  | 7.4  | 1.8       | 18.7                    | 18.8 | 18.8 | 13.2 |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|    |                                           | 1-hour SO₂ (μg/m³) |      |      |      |              |           |         |      |  |  |
|----|-------------------------------------------|--------------------|------|------|------|--------------|-----------|---------|------|--|--|
| חו | Namo                                      |                    | Pro  | ject |      | Pro          | ject plus | backgro | und  |  |  |
|    | Indiffe                                   | Overl<br>oad       | 100% | 60%  | 25%  | Overl<br>oad | 100%      | 60%     | 25%  |  |  |
| 19 | Cavendish Homestead <sup>a</sup>          | 8.7                | 8.2  | 10.3 | 4.1  | 20.1         | 19.6      | 21.7    | 15.5 |  |  |
| 20 | Colorado Homestead                        | 14.8               | 10.3 | 5.9  | 5.2  | 26.2         | 21.7      | 17.3    | 16.6 |  |  |
| 21 | Corn Top Homestead <sup>a</sup>           | 10.4               | 6.9  | 3.8  | 10.1 | 21.8         | 18.3      | 15.2    | 21.5 |  |  |
| 22 | Creek Farm Homestead                      | 9.7                | 7.5  | 4.8  | 2.2  | 21.1         | 18.9      | 16.2    | 13.6 |  |  |
| 25 | Dwelling                                  | 7.1                | 5.2  | 4.3  | 2.4  | 18.5         | 16.6      | 15.7    | 13.8 |  |  |
| 26 | Dwelling                                  | 5.9                | 6.9  | 4.9  | 4.4  | 17.3         | 18.3      | 16.3    | 15.8 |  |  |
| 27 | Dwelling                                  | 7.3                | 7.0  | 5.5  | 3.5  | 18.7         | 18.4      | 16.9    | 14.9 |  |  |
| 28 | Dwelling                                  | 6.9                | 6.2  | 5.5  | 2.2  | 18.3         | 17.6      | 16.9    | 13.6 |  |  |
| 29 | Dwelling                                  | 8.9                | 6.8  | 4.2  | 4.6  | 20.3         | 18.2      | 15.6    | 16.0 |  |  |
| 30 | Dwelling                                  | 5.8                | 7.8  | 9.6  | 3.8  | 17.2         | 19.2      | 21.0    | 15.2 |  |  |
| 31 | Dwelling                                  | 7.9                | 6.0  | 5.7  | 2.8  | 19.3         | 17.4      | 17.1    | 14.2 |  |  |
| 32 | Dwelling                                  | 5.4                | 5.5  | 6.9  | 5.9  | 16.8         | 16.9      | 18.3    | 17.3 |  |  |
| 33 | Dwelling                                  | 5.4                | 5.4  | 7.0  | 4.0  | 16.8         | 16.8      | 18.4    | 15.4 |  |  |
| 34 | Dwelling                                  | 7.9                | 6.8  | 3.3  | 4.6  | 19.3         | 18.2      | 14.7    | 16.0 |  |  |
| 35 | Dwelling                                  | 8.1                | 5.7  | 3.8  | 5.0  | 19.5         | 17.1      | 15.2    | 16.4 |  |  |
| 36 | Dwelling                                  | 10.3               | 13.0 | 3.3  | 2.7  | 21.7         | 24.4      | 14.7    | 14.1 |  |  |
| 37 | Dwelling                                  | 6.0                | 6.6  | 5.9  | 6.2  | 17.4         | 18.0      | 17.3    | 17.6 |  |  |
| 38 | Dwelling?                                 | 6.2                | 6.1  | 5.1  | 4.2  | 17.6         | 17.5      | 16.5    | 15.6 |  |  |
| 39 | Edwinstowe Homestead                      | 11.7               | 9.1  | 4.9  | 3.4  | 23.1         | 20.5      | 16.3    | 14.8 |  |  |
| 40 | Elphin Homestead                          | 7.4                | 13.6 | 5.6  | 4.1  | 18.8         | 25.0      | 17.0    | 15.5 |  |  |
| 41 | Eulimbie Homestead                        | 8.3                | 6.8  | 4.8  | 2.5  | 19.7         | 18.2      | 16.2    | 13.9 |  |  |
| 42 | Eureka Homestead                          | 29.4               | 22.0 | 19.4 | 6.2  | 40.8         | 33.4      | 30.8    | 17.6 |  |  |
| 44 | Gadwell Homestead                         | 12.9               | 11.1 | 3.7  | 7.0  | 24.3         | 22.5      | 15.1    | 18.4 |  |  |
| 46 | Glen Innes Homestead <sup>a</sup>         | 18.6               | 17.5 | 12.5 | 6.9  | 30.0         | 28.9      | 23.9    | 18.3 |  |  |
| 47 | Hazelbrook Homestead                      | 8.3                | 6.2  | 3.2  | 3.5  | 19.7         | 17.6      | 14.6    | 14.9 |  |  |
| 49 | Hobartville Homestead <sup>b</sup>        | 11.1               | 12.1 | 14.5 | 8.4  | 22.5         | 23.5      | 25.9    | 19.8 |  |  |
| 50 | Inverurie Homestead                       | 10.1               | 15.4 | 5.9  | 6.1  | 21.5         | 26.8      | 17.3    | 17.5 |  |  |
| 51 | Islay Plains Homestead                    | 2.2                | 2.2  | 1.6  | 2.0  | 13.6         | 13.6      | 13.0    | 13.4 |  |  |
| 52 | Jericho                                   | 8.3                | 6.4  | 5.7  | 2.6  | 19.7         | 17.8      | 17.1    | 14.0 |  |  |
| 53 | Jordan Avon Homestead                     | 11.7               | 11.0 | 6.9  | 4.6  | 23.1         | 22.4      | 18.3    | 16.0 |  |  |
| 54 | Kalbar Homestead                          | 3.5                | 3.0  | 1.8  | 1.0  | 14.9         | 14.4      | 13.2    | 12.4 |  |  |
| 55 | Kerand Homestead                          | 3.2                | 2.8  | 1.7  | 0.8  | 14.6         | 14.2      | 13.1    | 12.2 |  |  |
| 56 | Kia Ora Homestead <sup>a</sup>            | 18.4               | 15.1 | 10.5 | 10.2 | 29.8         | 26.5      | 21.9    | 21.6 |  |  |
| 57 | Lambton Meadows<br>Homestead <sup>a</sup> | 21.6               | 15.7 | 10.9 | 6.2  | 33.0         | 27.1      | 22.3    | 17.6 |  |  |
| 59 | Locharnoch                                | 13.2               | 11.8 | 7.1  | 3.0  | 24.6         | 23.2      | 18.5    | 14.4 |  |  |
| 60 | Melton Homestead                          | 5.8                | 4.0  | 2.4  | 1.9  | 17.2         | 15.4      | 13.8    | 13.3 |  |  |
| 61 | Mentmore Homestead                        | 13.0               | 11.7 | 8.3  | 5.8  | 24.4         | 23.1      | 19.7    | 17.2 |  |  |
| 62 | Milangavla                                | 8.8                | 9.8  | 17.0 | 4.6  | 20.2         | 21.2      | 28.4    | 16.0 |  |  |
| 63 | Monklands <sup>a</sup>                    | 41.9               | 36.9 | 24.2 | 13.9 | 53.3         | 48.3      | 35.6    | 25.3 |  |  |
| 64 | Moonstone Homestead                       | 5.4                | 8.1  | 6.2  | 2.5  | 16.8         | 19.5      | 17.6    | 13.9 |  |  |
| 65 | Mossvale Homestead                        | 17.5               | 13.7 | 3.6  | 5.4  | 28.9         | 25.1      | 15.0    | 16.8 |  |  |

|         |                                  |              | 1-hour SO₂ (μg/m³) |      |      |              |           |         |      |  |  |  |
|---------|----------------------------------|--------------|--------------------|------|------|--------------|-----------|---------|------|--|--|--|
| סו      | Name                             |              | Pro                | ject |      | Pro          | ject plus | backgro | und  |  |  |  |
|         | Nume                             | Overl<br>oad | 100%               | 60%  | 25%  | Overl<br>oad | 100%      | 60%     | 25%  |  |  |  |
| 67      | Oakleigh Homestead               | 16.1         | 17.8               | 7.8  | 2.8  | 27.5         | 29.2      | 19.2    | 14.2 |  |  |  |
| 68      | Quarry?                          | 9.2          | 9.2                | 6.4  | 2.9  | 20.6         | 20.6      | 17.8    | 14.3 |  |  |  |
| 69      | Racecourse                       | 8.9          | 7.5                | 5.5  | 2.6  | 20.3         | 18.9      | 16.9    | 14.0 |  |  |  |
| 70      | Racecourse                       | 5.1          | 4.8                | 4.7  | 5.5  | 16.5         | 16.2      | 16.1    | 16.9 |  |  |  |
| 72      | Rosedale Homestead               | 10.6         | 5.7                | 5.0  | 3.8  | 22.0         | 17.1      | 16.4    | 15.2 |  |  |  |
| 73      | Rosefield Homestead              | 13.3         | 14.4               | 10.3 | 7.2  | 24.7         | 25.8      | 21.7    | 18.6 |  |  |  |
| 74      | Salt Bush Homestead              | 12.0         | 9.8                | 9.5  | 9.1  | 23.4         | 21.2      | 20.9    | 20.5 |  |  |  |
| 75      | Speculation Homestead            | 5.9          | 10.7               | 6.0  | 4.7  | 17.3         | 22.1      | 17.4    | 16.1 |  |  |  |
| 76      | Spring Creek <sup>a</sup>        | 10.6         | 10.9               | 10.5 | 5.7  | 22.0         | 22.3      | 21.9    | 17.1 |  |  |  |
| 79      | Surbiton Homestead               | 4.3          | 4.6                | 5.1  | 2.3  | 15.7         | 16.0      | 16.5    | 13.7 |  |  |  |
| 80      | Surbiton Station                 | 7.9          | 6.3                | 4.1  | 4.3  | 19.3         | 17.7      | 15.5    | 15.7 |  |  |  |
| 81      | The Grove Homestead              | 9.9          | 9.1                | 9.7  | 2.1  | 21.3         | 20.5      | 21.1    | 13.5 |  |  |  |
| 82      | Toarbee                          | 11.1         | 15.2               | 10.7 | 8.3  | 22.5         | 26.6      | 22.1    | 19.7 |  |  |  |
| 84      | Tressillian Homestead            | 7.5          | 6.9                | 4.8  | 3.0  | 18.9         | 18.3      | 16.2    | 14.4 |  |  |  |
| 85      | Villafield Homestead             | 16.6         | 12.9               | 5.2  | 7.0  | 28.0         | 24.3      | 16.6    | 18.4 |  |  |  |
| 86      | Wendouree Homestead <sup>b</sup> | 8.4          | 7.7                | 6.7  | 9.8  | 19.8         | 19.1      | 18.1    | 21.2 |  |  |  |
| 87      | Woodbrook Homestead              | 2.7          | 2.3                | 1.1  | 0.6  | 14.1         | 13.7      | 12.5    | 12.0 |  |  |  |
| 88      | Wycheproof Homestead             | 7.4          | 8.6                | 5.9  | 1.3  | 18.8         | 20.0      | 17.3    | 12.7 |  |  |  |
| 89      | Zeta Homestead                   | 5.2          | 7.2                | 5.8  | 4.4  | 16.6         | 18.6      | 17.2    | 15.8 |  |  |  |
| -       | Workers' Camp                    | 76.2         | 73.7               | 47.3 | 31.1 | 87.6         | 85.1      | 58.7    | 42.5 |  |  |  |
|         | Background included              | -            | -                  | -    | -    | 11           | 11        | 11      | 11   |  |  |  |
|         | Objective                        | -            | -                  | -    | -    | 570          | 570       | 570     | 570  |  |  |  |
| Table r | note:                            |              |                    |      |      |              |           |         |      |  |  |  |

<sup>a</sup> These receptors will be acquired by Waratah

 $^{\rm b}$  These receptors will be acquired by Alpha Coal

# Table B41,400 MW – Predicted maximum 24-hour average ground-level concentrations of<br/>SO2 due to Project in isolation and with background

|    |                                                       |              | Maximum 24-hour SO₂ (μg/m³) |      |     |                         |      |     |     |  |  |
|----|-------------------------------------------------------|--------------|-----------------------------|------|-----|-------------------------|------|-----|-----|--|--|
| ID | Name                                                  |              | Pro                         | ject |     | Project plus background |      |     |     |  |  |
|    |                                                       | Overl<br>oad | 100%                        | 60%  | 25% | Overl<br>oad            | 100% | 60% | 25% |  |  |
| 0  | Dwelling                                              | 0.9          | 0.8                         | 0.5  | 0.0 | 6.6                     | 6.5  | 6.2 | 5.7 |  |  |
| 1  | Dwelling                                              | 1.1          | 0.9                         | 0.4  | 0.3 | 6.8                     | 6.6  | 6.1 | 6.0 |  |  |
| 2  | Dwelling                                              | 0.4          | 0.4                         | 0.2  | 0.3 | 6.1                     | 6.1  | 5.9 | 6.0 |  |  |
| 5  | Accommodation Village -<br>Alpha Coal Project         | 1.1          | 1.0                         | 0.8  | 0.2 | 6.8                     | 6.7  | 6.5 | 5.9 |  |  |
| 6  | Accommodation Village -<br>South Galilee Coal Project | 0.9          | 0.9                         | 1.5  | 0.4 | 6.6                     | 6.6  | 7.2 | 6.1 |  |  |
| 7  | Airfield                                              | 1.1          | 0.9                         | 0.6  | 0.5 | 6.8                     | 6.6  | 6.3 | 6.2 |  |  |
| 8  | Alpha                                                 | 0.6          | 0.6                         | 0.3  | 0.2 | 6.3                     | 6.3  | 6.0 | 5.9 |  |  |

### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final
|    |                                    | Maximum 24-hour SO₂ (μg/m³) |      |      |     |              |           |         |     |
|----|------------------------------------|-----------------------------|------|------|-----|--------------|-----------|---------|-----|
| חו | Namo                               |                             | Pro  | ject |     | Pro          | ject plus | backgro | und |
|    | Name                               | Overl<br>oad                | 100% | 60%  | 25% | Overl<br>oad | 100%      | 60%     | 25% |
| 9  | Alpha Coal Bulk Sample             | 1.0                         | 1.1  | 0.8  | 0.3 | 6.7          | 6.8       | 6.5     | 6.0 |
| 10 | Beaufort Homestead                 | 0.4                         | 0.3  | 0.2  | 0.8 | 6.1          | 6.0       | 5.9     | 6.5 |
| 11 | Bedford Homestead                  | 0.6                         | 0.6  | 0.3  | 0.1 | 6.3          | 6.3       | 6.0     | 5.8 |
| 12 | Betanga Homestead                  | 0.9                         | 0.8  | 0.8  | 0.5 | 6.6          | 6.5       | 6.5     | 6.2 |
| 13 | Blairgowrie                        | 0.5                         | 0.5  | 0.3  | 0.4 | 6.2          | 6.2       | 6.0     | 6.1 |
| 14 | Bonanza Homestead                  | 1.1                         | 0.9  | 0.4  | 0.3 | 6.8          | 6.6       | 6.1     | 6.0 |
| 16 | Burgoyne Homestead                 | 0.9                         | 0.7  | 0.5  | 0.3 | 6.6          | 6.4       | 6.2     | 6.0 |
| 17 | Burtle Homestead                   | 0.8                         | 0.7  | 0.5  | 0.2 | 6.5          | 6.4       | 6.2     | 5.9 |
| 18 | Carinya Homestead                  | 0.4                         | 0.4  | 0.3  | 0.3 | 6.1          | 6.1       | 6.0     | 6.0 |
| 19 | Cavendish Homestead <sup>a</sup>   | 1.4                         | 1.6  | 1.3  | 0.1 | 7.1          | 7.3       | 7.0     | 5.8 |
| 20 | Colorado Homestead                 | 0.9                         | 0.8  | 0.6  | 0.5 | 6.6          | 6.5       | 6.3     | 6.2 |
| 21 | Corn Top Homestead <sup>a</sup>    | 1.1                         | 0.9  | 0.7  | 0.3 | 6.8          | 6.6       | 6.4     | 6.0 |
| 22 | Creek Farm Homestead               | 1.1                         | 1.0  | 0.5  | 0.7 | 6.8          | 6.7       | 6.2     | 6.4 |
| 25 | Dwelling                           | 0.8                         | 0.5  | 0.4  | 0.3 | 6.5          | 6.2       | 6.1     | 6.0 |
| 26 | Dwelling                           | 0.9                         | 0.9  | 0.5  | 0.2 | 6.6          | 6.6       | 6.2     | 5.9 |
| 27 | Dwelling                           | 1.1                         | 0.8  | 0.5  | 0.3 | 6.8          | 6.5       | 6.2     | 6.0 |
| 28 | Dwelling                           | 0.7                         | 0.6  | 0.5  | 0.3 | 6.4          | 6.3       | 6.2     | 6.0 |
| 29 | Dwelling                           | 0.8                         | 0.7  | 0.5  | 0.3 | 6.5          | 6.4       | 6.2     | 6.0 |
| 30 | Dwelling                           | 0.7                         | 0.7  | 0.5  | 0.5 | 6.4          | 6.4       | 6.2     | 6.2 |
| 31 | Dwelling                           | 0.9                         | 0.9  | 0.8  | 0.3 | 6.6          | 6.6       | 6.5     | 6.0 |
| 32 | Dwelling                           | 0.6                         | 0.6  | 0.4  | 0.2 | 6.3          | 6.3       | 6.1     | 5.9 |
| 33 | Dwelling                           | 0.6                         | 0.6  | 0.4  | 0.4 | 6.3          | 6.3       | 6.1     | 6.1 |
| 34 | Dwelling                           | 0.5                         | 0.4  | 0.3  | 0.3 | 6.2          | 6.1       | 6.0     | 6.0 |
| 35 | Dwelling                           | 0.5                         | 0.4  | 0.3  | 0.3 | 6.2          | 6.1       | 6.0     | 6.0 |
| 36 | Dwelling                           | 0.7                         | 0.8  | 0.3  | 0.3 | 6.4          | 6.5       | 6.0     | 6.0 |
| 37 | Dwelling                           | 0.5                         | 0.4  | 0.3  | 0.2 | 6.2          | 6.1       | 6.0     | 5.9 |
| 38 | Dwelling?                          | 0.5                         | 0.4  | 0.3  | 0.3 | 6.2          | 6.1       | 6.0     | 6.0 |
| 39 | Edwinstowe Homestead               | 1.0                         | 0.8  | 0.4  | 0.3 | 6.7          | 6.5       | 6.1     | 6.0 |
| 40 | Elphin Homestead                   | 0.5                         | 0.8  | 0.4  | 0.3 | 6.2          | 6.5       | 6.1     | 6.0 |
| 41 | Eulimbie Homestead                 | 0.5                         | 0.4  | 0.3  | 0.2 | 6.2          | 6.1       | 6.0     | 5.9 |
| 42 | Eureka Homestead                   | 1.7                         | 1.6  | 1.3  | 0.2 | 7.4          | 7.3       | 7.0     | 5.9 |
| 44 | Gadwell Homestead                  | 0.6                         | 0.5  | 0.3  | 0.5 | 6.3          | 6.2       | 6.0     | 6.2 |
| 46 | Glen Innes Homestead <sup>a</sup>  | 3.1                         | 3.2  | 3.3  | 0.3 | 8.8          | 8.9       | 9.0     | 6.0 |
| 47 | Hazelbrook Homestead               | 0.6                         | 0.5  | 0.3  | 1.1 | 6.3          | 6.2       | 6.0     | 6.8 |
| 49 | Hobartville Homestead <sup>b</sup> | 1.8                         | 1.7  | 2.6  | 0.2 | 7.5          | 7.4       | 8.3     | 5.9 |
| 50 | Inverurie Homestead                | 0.8                         | 1.4  | 0.5  | 1.9 | 6.5          | 7.1       | 6.2     | 7.6 |
| 51 | Islay Plains Homestead             | 0.6                         | 0.6  | 0.4  | 0.5 | 6.3          | 6.3       | 6.1     | 6.2 |
| 52 | Jericho                            | 1.2                         | 1.0  | 0.7  | 0.3 | 6.9          | 6.7       | 6.4     | 6.0 |
| 53 | Jordan Avon Homestead              | 1.0                         | 0.9  | 0.5  | 0.3 | 6.7          | 6.6       | 6.2     | 6.0 |
| 54 | Kalbar Homestead                   | 0.3                         | 0.2  | 0.2  | 0.3 | 6.0          | 5.9       | 5.9     | 6.0 |
| 55 | Kerand Homestead                   | 0.2                         | 0.1  | 0.1  | 0.1 | 5.9          | 5.8       | 5.8     | 5.8 |

|         |                                           | Maximum 24-hour SO₂ (μg/m³) |      |      |     |              |           |         |     |
|---------|-------------------------------------------|-----------------------------|------|------|-----|--------------|-----------|---------|-----|
| D       | Name                                      |                             | Pro  | ject |     | Pro          | ject plus | backgro | und |
| 10      |                                           | Overl<br>oad                | 100% | 60%  | 25% | Overl<br>oad | 100%      | 60%     | 25% |
| 56      | Kia Ora Homestead <sup>a</sup>            | 2.8                         | 2.5  | 1.4  | 0.1 | 8.5          | 8.2       | 7.1     | 5.8 |
| 57      | Lambton Meadows<br>Homestead <sup>a</sup> | 1.1                         | 1.4  | 2.2  | 0.8 | 6.8          | 7.1       | 7.9     | 6.5 |
| 59      | Locharnoch                                | 0.8                         | 0.8  | 0.7  | 0.5 | 6.5          | 6.5       | 6.4     | 6.2 |
| 60      | Melton Homestead                          | 0.3                         | 0.2  | 0.2  | 0.3 | 6.0          | 5.9       | 5.9     | 6.0 |
| 61      | Mentmore Homestead                        | 0.8                         | 0.7  | 0.7  | 0.1 | 6.5          | 6.4       | 6.4     | 5.8 |
| 62      | Milangavla                                | 1.0                         | 0.9  | 1.1  | 0.4 | 6.7          | 6.6       | 6.8     | 6.1 |
| 63      | Monklands <sup>a</sup>                    | 4.8                         | 4.7  | 4.1  | 0.3 | 10.5         | 10.4      | 9.8     | 6.0 |
| 64      | Moonstone Homestead                       | 0.6                         | 0.7  | 0.7  | 3.1 | 6.3          | 6.4       | 6.4     | 8.8 |
| 65      | Mossvale Homestead                        | 1.0                         | 0.8  | 0.4  | 0.3 | 6.7          | 6.5       | 6.1     | 6.0 |
| 67      | Oakleigh Homestead                        | 1.6                         | 1.5  | 0.9  | 0.3 | 7.3          | 7.2       | 6.6     | 6.0 |
| 68      | Quarry?                                   | 1.1                         | 0.9  | 0.7  | 0.4 | 6.8          | 6.6       | 6.4     | 6.1 |
| 69      | Racecourse                                | 1.2                         | 1.0  | 0.7  | 0.2 | 6.9          | 6.7       | 6.4     | 5.9 |
| 70      | Racecourse                                | 0.6                         | 0.6  | 0.3  | 0.3 | 6.3          | 6.3       | 6.0     | 6.0 |
| 72      | Rosedale Homestead                        | 0.7                         | 0.4  | 0.3  | 0.3 | 6.4          | 6.1       | 6.0     | 6.0 |
| 73      | Rosefield Homestead                       | 1.2                         | 1.2  | 0.8  | 0.2 | 6.9          | 6.9       | 6.5     | 5.9 |
| 74      | Salt Bush Homestead                       | 1.0                         | 0.9  | 0.6  | 0.4 | 6.7          | 6.6       | 6.3     | 6.1 |
| 75      | Speculation Homestead                     | 0.4                         | 0.6  | 0.5  | 0.6 | 6.1          | 6.3       | 6.2     | 6.3 |
| 76      | Spring Creek <sup>a</sup>                 | 1.2                         | 1.3  | 1.1  | 0.3 | 6.9          | 7.0       | 6.8     | 6.0 |
| 79      | Surbiton Homestead                        | 0.5                         | 0.4  | 0.5  | 0.4 | 6.2          | 6.1       | 6.2     | 6.1 |
| 80      | Surbiton Station                          | 0.5                         | 0.5  | 0.5  | 0.2 | 6.2          | 6.2       | 6.2     | 5.9 |
| 81      | The Grove Homestead                       | 0.8                         | 0.8  | 0.5  | 0.3 | 6.5          | 6.5       | 6.2     | 6.0 |
| 82      | Toarbee                                   | 0.8                         | 0.9  | 0.7  | 0.1 | 6.5          | 6.6       | 6.4     | 5.8 |
| 84      | Tressillian Homestead                     | 0.7                         | 0.6  | 0.5  | 0.4 | 6.4          | 6.3       | 6.2     | 6.1 |
| 85      | Villafield Homestead                      | 1.2                         | 1.0  | 0.5  | 0.3 | 6.9          | 6.7       | 6.2     | 6.0 |
| 86      | Wendouree Homestead <sup>b</sup>          | 1.7                         | 1.4  | 0.9  | 0.4 | 7.4          | 7.1       | 6.6     | 6.1 |
| 87      | Woodbrook Homestead                       | 0.2                         | 0.2  | 0.1  | 0.7 | 5.9          | 5.9       | 5.8     | 6.4 |
| 88      | Wycheproof Homestead                      | 0.4                         | 0.5  | 0.3  | 0.0 | 6.1          | 6.2       | 6.0     | 5.7 |
| 89      | Zeta Homestead                            | 0.4                         | 0.4  | 0.4  | 0.1 | 6.1          | 6.1       | 6.1     | 5.8 |
| -       | Workers' Camp                             | 5.9                         | 5.8  | 3.9  | 2.3 | 11.6         | 11.5      | 9.6     | 8.0 |
|         | Background included                       | -                           | -    | -    | -   | 5.7          | 5.7       | 5.7     | 5.7 |
|         | Objective                                 | -                           | -    | -    | -   | 230          | 230       | 230     | 230 |
| Table r | Table note:                               |                             |      |      |     |              |           |         |     |

<sup>a</sup> These receptors will be acquired by Waratah

<sup>b</sup> These receptors will be acquired by Alpha Coal

Table B5

1,400 MW – Predicted annual average ground-level concentrations of  $SO_2$  due to Project in isolation and with background

### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|    |                                                       | Annual SO₂ (μg/m³) |      |      |      |              |           |         |     |
|----|-------------------------------------------------------|--------------------|------|------|------|--------------|-----------|---------|-----|
|    | Namo                                                  |                    | Pro  | ject |      | Pro          | ject plus | backgro | und |
|    | Indiffe                                               | Overl<br>oad       | 100% | 60%  | 25%  | Overl<br>oad | 100%      | 60%     | 25% |
| 0  | Dwelling                                              | 0.03               | 0.03 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 1  | Dwelling                                              | 0.06               | 0.05 | 0.03 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 2  | Dwelling                                              | 0.02               | 0.01 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 5  | Accommodation Village -<br>Alpha Coal Project         | 0.03               | 0.03 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 6  | Accommodation Village -<br>South Galilee Coal Project | 0.04               | 0.04 | 0.03 | 0.02 | 3.6          | 3.6       | 3.6     | 3.6 |
| 7  | Airfield                                              | 0.06               | 0.06 | 0.04 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 8  | Alpha                                                 | 0.02               | 0.02 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 9  | Alpha Coal Bulk Sample                                | 0.06               | 0.06 | 0.05 | 0.04 | 3.7          | 3.7       | 3.6     | 3.6 |
| 10 | Beaufort Homestead                                    | 0.01               | 0.01 | 0.01 | 0.00 | 3.6          | 3.6       | 3.6     | 3.6 |
| 11 | Bedford Homestead                                     | 0.03               | 0.02 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 12 | Betanga Homestead                                     | 0.05               | 0.05 | 0.04 | 0.03 | 3.7          | 3.6       | 3.6     | 3.6 |
| 13 | Blairgowrie                                           | 0.03               | 0.03 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 14 | Bonanza Homestead                                     | 0.04               | 0.03 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 16 | Burgoyne Homestead                                    | 0.04               | 0.04 | 0.03 | 0.02 | 3.6          | 3.6       | 3.6     | 3.6 |
| 17 | Burtle Homestead                                      | 0.03               | 0.03 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 18 | Carinya Homestead                                     | 0.01               | 0.01 | 0.01 | 0.00 | 3.6          | 3.6       | 3.6     | 3.6 |
| 19 | Cavendish Homestead <sup>a</sup>                      | 0.11               | 0.10 | 0.08 | 0.05 | 3.7          | 3.7       | 3.7     | 3.6 |
| 20 | Colorado Homestead                                    | 0.05               | 0.05 | 0.03 | 0.02 | 3.7          | 3.6       | 3.6     | 3.6 |
| 21 | Corn Top Homestead <sup>a</sup>                       | 0.06               | 0.05 | 0.04 | 0.03 | 3.7          | 3.7       | 3.6     | 3.6 |
| 22 | Creek Farm Homestead                                  | 0.04               | 0.04 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 25 | Dwelling                                              | 0.05               | 0.04 | 0.03 | 0.02 | 3.7          | 3.6       | 3.6     | 3.6 |
| 26 | Dwelling                                              | 0.06               | 0.05 | 0.03 | 0.02 | 3.7          | 3.6       | 3.6     | 3.6 |
| 27 | Dwelling                                              | 0.06               | 0.05 | 0.04 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 28 | Dwelling                                              | 0.04               | 0.04 | 0.03 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 29 | Dwelling                                              | 0.06               | 0.05 | 0.04 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 30 | Dwelling                                              | 0.04               | 0.04 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 31 | Dwelling                                              | 0.05               | 0.05 | 0.03 | 0.02 | 3.7          | 3.6       | 3.6     | 3.6 |
| 32 | Dwelling                                              | 0.03               | 0.02 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 33 | Dwelling                                              | 0.03               | 0.02 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 34 | Dwelling                                              | 0.02               | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 35 | Dwelling                                              | 0.02               | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 36 | Dwelling                                              | 0.02               | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 37 | Dwelling                                              | 0.02               | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 38 | Dwelling?                                             | 0.02               | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 39 | Edwinstowe Homestead                                  | 0.05               | 0.04 | 0.03 | 0.02 | 3.6          | 3.6       | 3.6     | 3.6 |
| 40 | Elphin Homestead                                      | 0.02               | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 41 | Eulimbie Homestead                                    | 0.01               | 0.01 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 42 | Eureka Homestead                                      | 0.08               | 0.08 | 0.05 | 0.03 | 3.7          | 3.7       | 3.7     | 3.6 |
| 44 | Gadwell Homestead                                     | 0.02               | 0.02 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 46 | Glen Innes Homestead <sup>a</sup>                     | 0.22               | 0.20 | 0.15 | 0.09 | 3.8          | 3.8       | 3.8     | 3.7 |

|           |                                           | Annual SO₂ (μg/m³)   |      |      |      |              |           |         |     |
|-----------|-------------------------------------------|----------------------|------|------|------|--------------|-----------|---------|-----|
| חו        | Name                                      |                      | Pro  | ject |      | Pro          | ject plus | backgro | und |
|           | Nume                                      | Overl<br>oad         | 100% | 60%  | 25%  | Overl<br>oad | 100%      | 60%     | 25% |
| 47        | Hazelbrook Homestead                      | 0.02                 | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 49        | Hobartville Homestead <sup>b</sup>        | 0.09                 | 0.09 | 0.07 | 0.05 | 3.7          | 3.7       | 3.7     | 3.6 |
| 50        | Inverurie Homestead                       | 0.07                 | 0.07 | 0.05 | 0.03 | 3.7          | 3.7       | 3.6     | 3.6 |
| 51        | Islay Plains Homestead                    | 0.01                 | 0.01 | 0.01 | 0.00 | 3.6          | 3.6       | 3.6     | 3.6 |
| 52        | Jericho                                   | 0.06                 | 0.05 | 0.04 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 53        | Jordan Avon Homestead                     | 0.07                 | 0.07 | 0.05 | 0.03 | 3.7          | 3.7       | 3.6     | 3.6 |
| 54        | Kalbar Homestead                          | 0.01                 | 0.01 | 0.01 | 0.00 | 3.6          | 3.6       | 3.6     | 3.6 |
| 55        | Kerand Homestead                          | 0.01                 | 0.01 | 0.01 | 0.00 | 3.6          | 3.6       | 3.6     | 3.6 |
| 56        | Kia Ora Homestead <sup>a</sup>            | 0.17                 | 0.16 | 0.12 | 0.07 | 3.8          | 3.8       | 3.7     | 3.7 |
| 57        | Lambton Meadows<br>Homestead <sup>a</sup> | 0.09                 | 0.08 | 0.06 | 0.03 | 3.7          | 3.7       | 3.7     | 3.6 |
| 59        | Locharnoch                                | 0.06                 | 0.06 | 0.04 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 60        | Melton Homestead                          | 0.01                 | 0.01 | 0.01 | 0.00 | 3.6          | 3.6       | 3.6     | 3.6 |
| 61        | Mentmore Homestead                        | 0.03                 | 0.03 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 62        | Milangavla                                | 0.08                 | 0.08 | 0.06 | 0.03 | 3.7          | 3.7       | 3.7     | 3.6 |
| 63        | Monklands <sup>a</sup>                    | 0.37                 | 0.37 | 0.38 | 0.29 | 4.0          | 4.0       | 4.0     | 3.9 |
| 64        | Moonstone Homestead                       | 0.02                 | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 65        | Mossvale Homestead                        | 0.02                 | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 67        | Oakleigh Homestead                        | 0.06                 | 0.06 | 0.04 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 68        | Quarry?                                   | 0.06                 | 0.05 | 0.04 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 69        | Racecourse                                | 0.06                 | 0.05 | 0.04 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 70        | Racecourse                                | 0.03                 | 0.03 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 72        | Rosedale Homestead                        | 0.04                 | 0.03 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 73        | Rosefield Homestead                       | 0.08                 | 0.07 | 0.05 | 0.03 | 3.7          | 3.7       | 3.6     | 3.6 |
| 74        | Salt Bush Homestead                       | 0.07                 | 0.06 | 0.04 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 75        | Speculation Homestead                     | 0.03                 | 0.03 | 0.03 | 0.02 | 3.6          | 3.6       | 3.6     | 3.6 |
| 76        | Spring Creek <sup>a</sup>                 | 0.10                 | 0.10 | 0.07 | 0.04 | 3.7          | 3.7       | 3.7     | 3.6 |
| 79        | Surbiton Homestead                        | 0.02                 | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 80        | Surbiton Station                          | 0.02                 | 0.01 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 81        | The Grove Homestead                       | 0.02                 | 0.02 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 82        | Toarbee                                   | 0.05                 | 0.05 | 0.03 | 0.02 | 3.7          | 3.7       | 3.6     | 3.6 |
| 84        | Tressillian Homestead                     | 0.03                 | 0.03 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 85        | Villafield Homestead                      | 0.04                 | 0.04 | 0.02 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| 86        | Wendouree Homestead <sup>b</sup>          | 0.05                 | 0.04 | 0.03 | 0.02 | 3.6          | 3.6       | 3.6     | 3.6 |
| 87        | Woodbrook Homestead                       | 0.01                 | 0.01 | 0.00 | 0.00 | 3.6          | 3.6       | 3.6     | 3.6 |
| 88        | Wycheproof Homestead                      | 0.01                 | 0.01 | 0.01 | 0.00 | 3.6          | 3.6       | 3.6     | 3.6 |
| 89        | Zeta Homestead                            | 0.01                 | 0.01 | 0.01 | 0.01 | 3.6          | 3.6       | 3.6     | 3.6 |
| -         | Workers' Camp                             | 0.17                 | 0.17 | 0.16 | 0.10 | 3.8          | 3.8       | 3.8     | 3.7 |
|           | Background included                       | included 3.6 3.6 3.6 |      |      | 3.6  |              |           |         |     |
| Objective |                                           |                      | -    | -    | 57   | 57           | 57        | 57      |     |
| Table n   | inte.                                     |                      |      |      |      |              |           |         |     |

<sup>a</sup> These receptors will be acquired by Waratah

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|                                                             | D Name . |              | Annual SO₂ (μg/m³) |     |     |                         |      |     |     |  |  |  |
|-------------------------------------------------------------|----------|--------------|--------------------|-----|-----|-------------------------|------|-----|-----|--|--|--|
| ID                                                          |          | Project      |                    |     |     | Project plus background |      |     |     |  |  |  |
| ID                                                          |          | Overl<br>oad | 100%               | 60% | 25% | Overl<br>oad            | 100% | 60% | 25% |  |  |  |
| <sup>b</sup> These receptors will be acquired by Alpha Coal |          |              |                    |     |     |                         |      |     |     |  |  |  |

## 1,400 MW – Predicted maximum 24-hour average ground-level concentrations of $PM_{10}$ due to Project in isolation and with background Table B6

|    |                                                       | Maximum 24-hour PM <sub>10</sub> (μg/m³) |      |      |     |              |           |         |      |
|----|-------------------------------------------------------|------------------------------------------|------|------|-----|--------------|-----------|---------|------|
| חו | Namo                                                  |                                          | Pro  | ject |     | Pro          | ject plus | backgro | und  |
|    | Name                                                  | Overl<br>oad                             | 100% | 60%  | 25% | Overl<br>oad | 100%      | 60%     | 25%  |
| 0  | Dwelling                                              | 1.8                                      | 1.6  | 0.9  | 0.6 | 22.2         | 22.0      | 21.3    | 21.0 |
| 1  | Dwelling                                              | 2.1                                      | 1.7  | 0.8  | 0.6 | 22.5         | 22.1      | 21.2    | 21.0 |
| 2  | Dwelling                                              | 0.8                                      | 0.7  | 0.5  | 0.3 | 21.2         | 21.1      | 20.9    | 20.7 |
| 5  | Accommodation Village -<br>Alpha Coal Project         | 2.1                                      | 2.0  | 1.5  | 0.7 | 22.5         | 22.4      | 21.9    | 21.1 |
| 6  | Accommodation Village -<br>South Galilee Coal Project | 1.7                                      | 1.8  | 2.9  | 1.1 | 22.1         | 22.2      | 23.3    | 21.5 |
| 7  | Airfield                                              | 2.2                                      | 1.9  | 1.2  | 0.5 | 22.6         | 22.3      | 21.6    | 20.9 |
| 8  | Alpha                                                 | 1.2                                      | 1.1  | 0.6  | 0.5 | 21.6         | 21.5      | 21.0    | 20.9 |
| 9  | Alpha Coal Bulk Sample                                | 2.0                                      | 2.2  | 1.5  | 1.5 | 22.4         | 22.6      | 21.9    | 21.9 |
| 10 | Beaufort Homestead                                    | 0.7                                      | 0.6  | 0.5  | 0.2 | 21.1         | 21.0      | 20.9    | 20.6 |
| 11 | Bedford Homestead                                     | 1.2                                      | 1.1  | 0.6  | 1.0 | 21.6         | 21.5      | 21.0    | 21.4 |
| 12 | Betanga Homestead                                     | 1.8                                      | 1.6  | 1.6  | 0.8 | 22.2         | 22.0      | 22.0    | 21.2 |
| 13 | Blairgowrie                                           | 1.0                                      | 0.9  | 0.6  | 0.6 | 21.4         | 21.3      | 21.0    | 21.0 |
| 14 | Bonanza Homestead                                     | 2.2                                      | 1.7  | 0.9  | 0.7 | 22.6         | 22.1      | 21.3    | 21.1 |
| 16 | Burgoyne Homestead                                    | 1.7                                      | 1.3  | 1.1  | 0.4 | 22.1         | 21.7      | 21.5    | 20.8 |
| 17 | Burtle Homestead                                      | 1.6                                      | 1.4  | 0.9  | 0.7 | 22.0         | 21.8      | 21.3    | 21.1 |
| 18 | Carinya Homestead                                     | 0.7                                      | 0.7  | 0.7  | 0.2 | 21.1         | 21.1      | 21.1    | 20.6 |
| 19 | Cavendish Homestead <sup>a</sup>                      | 2.8                                      | 3.1  | 2.6  | 1.0 | 23.2         | 23.5      | 23.0    | 21.4 |
| 20 | Colorado Homestead                                    | 1.8                                      | 1.6  | 1.3  | 0.6 | 22.2         | 22.0      | 21.7    | 21.0 |
| 21 | Corn Top Homestead <sup>a</sup>                       | 2.1                                      | 1.8  | 1.4  | 1.4 | 22.5         | 22.2      | 21.8    | 21.8 |
| 22 | Creek Farm Homestead                                  | 2.1                                      | 1.9  | 0.9  | 0.6 | 22.5         | 22.3      | 21.3    | 21.0 |
| 25 | Dwelling                                              | 1.5                                      | 1.0  | 0.8  | 0.5 | 21.9         | 21.4      | 21.2    | 20.9 |
| 26 | Dwelling                                              | 1.8                                      | 1.8  | 1.0  | 0.6 | 22.2         | 22.2      | 21.4    | 21.0 |
| 27 | Dwelling                                              | 2.2                                      | 1.6  | 1.0  | 0.6 | 22.6         | 22.0      | 21.4    | 21.0 |
| 28 | Dwelling                                              | 1.3                                      | 1.2  | 1.0  | 0.5 | 21.7         | 21.6      | 21.4    | 20.9 |
| 29 | Dwelling                                              | 1.5                                      | 1.3  | 1.0  | 1.0 | 21.9         | 21.7      | 21.4    | 21.4 |
| 30 | Dwelling                                              | 1.4                                      | 1.3  | 1.0  | 0.6 | 21.8         | 21.7      | 21.4    | 21.0 |
| 31 | Dwelling                                              | 1.8                                      | 1.7  | 1.6  | 0.4 | 22.2         | 22.1      | 22.0    | 20.8 |
| 32 | Dwelling                                              | 1.2                                      | 1.1  | 0.8  | 0.8 | 21.6         | 21.5      | 21.2    | 21.2 |
| 33 | Dwelling                                              | 1.2                                      | 1.1  | 0.8  | 0.6 | 21.6         | 21.5      | 21.2    | 21.0 |
| 34 | Dwelling                                              | 1.0                                      | 0.8  | 0.5  | 0.5 | 21.4         | 21.2      | 20.9    | 20.9 |
| 35 | Dwelling                                              | 1.0                                      | 0.9  | 0.6  | 0.6 | 21.4         | 21.3      | 21.0    | 21.0 |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|    |                                           | Maximum 24-hour PM₁₀ (μg/m³) |      |      |     |              |           |         |      |
|----|-------------------------------------------|------------------------------|------|------|-----|--------------|-----------|---------|------|
| חו | Namo                                      |                              | Pro  | ject |     | Pro          | ject plus | backgro | und  |
|    | Name                                      | Overl<br>oad                 | 100% | 60%  | 25% | Overl<br>oad | 100%      | 60%     | 25%  |
| 36 | Dwelling                                  | 1.4                          | 1.5  | 0.6  | 0.4 | 21.8         | 21.9      | 21.0    | 20.8 |
| 37 | Dwelling                                  | 1.0                          | 0.9  | 0.7  | 0.6 | 21.4         | 21.3      | 21.1    | 21.0 |
| 38 | Dwelling?                                 | 0.9                          | 0.8  | 0.6  | 0.5 | 21.3         | 21.2      | 21.0    | 20.9 |
| 39 | Edwinstowe Homestead                      | 1.9                          | 1.6  | 0.8  | 0.7 | 22.3         | 22.0      | 21.2    | 21.1 |
| 40 | Elphin Homestead                          | 1.0                          | 1.5  | 0.8  | 0.3 | 21.4         | 21.9      | 21.2    | 20.7 |
| 41 | Eulimbie Homestead                        | 1.0                          | 0.9  | 0.6  | 0.3 | 21.4         | 21.3      | 21.0    | 20.7 |
| 42 | Eureka Homestead                          | 3.3                          | 3.2  | 2.5  | 1.0 | 23.7         | 23.6      | 22.9    | 21.4 |
| 44 | Gadwell Homestead                         | 1.2                          | 1.0  | 0.6  | 0.6 | 21.6         | 21.4      | 21.0    | 21.0 |
| 46 | Glen Innes Homestead <sup>a</sup>         | 6.1                          | 6.2  | 6.5  | 2.2 | 26.5         | 26.6      | 26.9    | 22.6 |
| 47 | Hazelbrook Homestead                      | 1.2                          | 1.0  | 0.5  | 0.4 | 21.6         | 21.4      | 20.9    | 20.8 |
| 49 | Hobartville Homestead <sup>b</sup>        | 3.6                          | 3.4  | 5.1  | 3.7 | 24.0         | 23.8      | 25.5    | 24.1 |
| 50 | Inverurie Homestead                       | 1.5                          | 2.7  | 1.0  | 0.9 | 21.9         | 23.1      | 21.4    | 21.3 |
| 51 | Islay Plains Homestead                    | 1.3                          | 1.1  | 0.8  | 0.6 | 21.7         | 21.5      | 21.2    | 21.0 |
| 52 | Jericho                                   | 2.3                          | 1.9  | 1.3  | 0.5 | 22.7         | 22.3      | 21.7    | 20.9 |
| 53 | Jordan Avon Homestead                     | 2.0                          | 1.7  | 1.1  | 0.7 | 22.4         | 22.1      | 21.5    | 21.1 |
| 54 | Kalbar Homestead                          | 0.5                          | 0.5  | 0.3  | 0.2 | 20.9         | 20.9      | 20.7    | 20.6 |
| 55 | Kerand Homestead                          | 0.3                          | 0.3  | 0.2  | 0.1 | 20.7         | 20.7      | 20.6    | 20.5 |
| 56 | Kia Ora Homestead <sup>a</sup>            | 5.5                          | 5.0  | 2.8  | 1.5 | 25.9         | 25.4      | 23.2    | 21.9 |
| 57 | Lambton Meadows<br>Homestead <sup>a</sup> | 2.2                          | 2.8  | 4.3  | 1.0 | 22.6         | 23.2      | 24.7    | 21.4 |
| 59 | Locharnoch                                | 1.6                          | 1.5  | 1.4  | 0.6 | 22.0         | 21.9      | 21.8    | 21.0 |
| 60 | Melton Homestead                          | 0.5                          | 0.5  | 0.4  | 0.3 | 20.9         | 20.9      | 20.8    | 20.7 |
| 61 | Mentmore Homestead                        | 1.5                          | 1.5  | 1.4  | 0.7 | 21.9         | 21.9      | 21.8    | 21.1 |
| 62 | Milangavla                                | 2.0                          | 1.7  | 2.1  | 0.6 | 22.4         | 22.1      | 22.5    | 21.0 |
| 63 | Monklands <sup>a</sup>                    | 9.4                          | 9.2  | 8.0  | 6.1 | 29.8         | 29.6      | 28.4    | 26.5 |
| 64 | Moonstone Homestead                       | 1.2                          | 1.3  | 1.3  | 0.7 | 21.6         | 21.7      | 21.7    | 21.1 |
| 65 | Mossvale Homestead                        | 1.9                          | 1.6  | 0.7  | 0.7 | 22.3         | 22.0      | 21.1    | 21.1 |
| 67 | Oakleigh Homestead                        | 3.1                          | 2.9  | 1.7  | 0.8 | 23.5         | 23.3      | 22.1    | 21.2 |
| 68 | Quarry?                                   | 2.1                          | 1.8  | 1.4  | 0.4 | 22.5         | 22.2      | 21.8    | 20.8 |
| 69 | Racecourse                                | 2.3                          | 2.0  | 1.4  | 0.5 | 22.7         | 22.4      | 21.8    | 20.9 |
| 70 | Racecourse                                | 1.2                          | 1.1  | 0.7  | 0.7 | 21.6         | 21.5      | 21.1    | 21.1 |
| 72 | Rosedale Homestead                        | 1.3                          | 0.8  | 0.6  | 0.5 | 21.7         | 21.2      | 21.0    | 20.9 |
| 73 | Rosefield Homestead                       | 2.3                          | 2.3  | 1.5  | 0.8 | 22.7         | 22.7      | 21.9    | 21.2 |
| 74 | Salt Bush Homestead                       | 2.0                          | 1.8  | 1.3  | 1.3 | 22.4         | 22.2      | 21.7    | 21.7 |
| 75 | Speculation Homestead                     | 0.8                          | 1.2  | 0.9  | 0.5 | 21.2         | 21.6      | 21.3    | 20.9 |
| 76 | Spring Creek <sup>a</sup>                 | 2.3                          | 2.6  | 2.2  | 0.9 | 22.7         | 23.0      | 22.6    | 21.3 |
| 79 | Surbiton Homestead                        | 0.9                          | 0.8  | 0.9  | 0.4 | 21.3         | 21.2      | 21.3    | 20.8 |
| 80 | Surbiton Station                          | 1.0                          | 1.0  | 1.1  | 0.5 | 21.4         | 21.4      | 21.5    | 20.9 |
| 81 | The Grove Homestead                       | 1.6                          | 1.5  | 0.9  | 0.3 | 22.0         | 21.9      | 21.3    | 20.7 |
| 82 | Toarbee                                   | 1.6                          | 1.8  | 1.4  | 0.8 | 22.0         | 22.2      | 21.8    | 21.2 |
| 84 | Tressillian Homestead                     | 1.4                          | 1.2  | 1.0  | 0.6 | 21.8         | 21.6      | 21.4    | 21.0 |
| 85 | Villafield Homestead                      | 2.4                          | 2.0  | 1.0  | 0.7 | 22.8         | 22.4      | 21.4    | 21.1 |

|                                                          |                                  |              | Maximum 24-hour PM <sub>10</sub> (μg/m³) |      |     |                         |      |      |      |  |  |  |
|----------------------------------------------------------|----------------------------------|--------------|------------------------------------------|------|-----|-------------------------|------|------|------|--|--|--|
| ID                                                       | Name                             |              | Pro                                      | ject |     | Project plus background |      |      |      |  |  |  |
|                                                          |                                  | Overl<br>oad | 100%                                     | 60%  | 25% | Overl<br>oad            | 100% | 60%  | 25%  |  |  |  |
| 86                                                       | Wendouree Homestead <sup>b</sup> | 3.3          | 2.8                                      | 1.7  | 1.3 | 23.7                    | 23.2 | 22.1 | 21.7 |  |  |  |
| 87                                                       | Woodbrook Homestead              | 0.4          | 0.3                                      | 0.2  | 0.1 | 20.8                    | 20.7 | 20.6 | 20.5 |  |  |  |
| 88                                                       | Wycheproof Homestead             | 0.9          | 1.0                                      | 0.6  | 0.2 | 21.3                    | 21.4 | 21.0 | 20.6 |  |  |  |
| 89                                                       | Zeta Homestead                   | 0.9          | 0.9                                      | 0.7  | 0.4 | 21.3                    | 21.3 | 21.1 | 20.8 |  |  |  |
| -                                                        | Workers' Camp                    | 11.7         | 11.3                                     | 7.7  | 4.6 | 32.1                    | 31.7 | 28.1 | 25.0 |  |  |  |
| Background included                                      |                                  | -            | -                                        | -    | -   | 20                      | 20   | 20   | 20   |  |  |  |
|                                                          | Objective                        | -            | -                                        | -    | -   | 50                      | 50   | 50   | 50   |  |  |  |
| Table                                                    | Table note:                      |              |                                          |      |     |                         |      |      |      |  |  |  |
| <sup>a</sup> These receptors will be acquired by Waratah |                                  |              |                                          |      |     |                         |      |      |      |  |  |  |

## 1,400 MW – Predicted maximum 24-hour average ground-level concentrations of $PM_{2.5}$ due to Project in isolation and with background Table B7

|    |                                                       | Maximum 24-hour PM <sub>2.5</sub> (μg/m³) |      |      |     |              |           |         |     |  |  |
|----|-------------------------------------------------------|-------------------------------------------|------|------|-----|--------------|-----------|---------|-----|--|--|
| ID | Name                                                  |                                           | Pro  | ject |     | Pro          | ject plus | backgro | und |  |  |
|    |                                                       | Overl<br>oad                              | 100% | 60%  | 25% | Overl<br>oad | 100%      | 60%     | 25% |  |  |
| 0  | Dwelling                                              | 1.8                                       | 1.6  | 0.9  | 0.6 | 6.8          | 6.6       | 5.9     | 5.6 |  |  |
| 1  | Dwelling                                              | 2.1                                       | 1.7  | 0.8  | 0.6 | 7.1          | 6.7       | 5.8     | 5.6 |  |  |
| 2  | Dwelling                                              | 0.8                                       | 0.7  | 0.5  | 0.3 | 5.8          | 5.7       | 5.5     | 5.3 |  |  |
| 5  | Accommodation Village -<br>Alpha Coal Project         | 2.1                                       | 2.0  | 1.5  | 0.7 | 7.1          | 7.0       | 6.5     | 5.7 |  |  |
| 6  | Accommodation Village -<br>South Galilee Coal Project | 1.7                                       | 1.8  | 2.9  | 1.1 | 6.7          | 6.8       | 7.9     | 6.1 |  |  |
| 7  | Airfield                                              | 2.2                                       | 1.9  | 1.2  | 0.5 | 7.2          | 6.9       | 6.2     | 5.5 |  |  |
| 8  | Alpha                                                 | 1.2                                       | 1.1  | 0.6  | 0.5 | 6.2          | 6.1       | 5.6     | 5.5 |  |  |
| 9  | Alpha Coal Bulk Sample                                | 2.0                                       | 2.2  | 1.5  | 1.5 | 7.0          | 7.2       | 6.5     | 6.5 |  |  |
| 10 | Beaufort Homestead                                    | 0.7                                       | 0.6  | 0.5  | 0.2 | 5.7          | 5.6       | 5.5     | 5.2 |  |  |
| 11 | Bedford Homestead                                     | 1.2                                       | 1.1  | 0.6  | 1.0 | 6.2          | 6.1       | 5.6     | 6.0 |  |  |
| 12 | Betanga Homestead                                     | 1.8                                       | 1.6  | 1.6  | 0.8 | 6.8          | 6.6       | 6.6     | 5.8 |  |  |
| 13 | Blairgowrie                                           | 1.0                                       | 0.9  | 0.6  | 0.6 | 6.0          | 5.9       | 5.6     | 5.6 |  |  |
| 14 | Bonanza Homestead                                     | 2.2                                       | 1.7  | 0.9  | 0.7 | 7.2          | 6.7       | 5.9     | 5.7 |  |  |
| 16 | Burgoyne Homestead                                    | 1.7                                       | 1.3  | 1.1  | 0.4 | 6.7          | 6.3       | 6.1     | 5.4 |  |  |
| 17 | Burtle Homestead                                      | 1.6                                       | 1.4  | 0.9  | 0.7 | 6.6          | 6.4       | 5.9     | 5.7 |  |  |
| 18 | Carinya Homestead                                     | 0.7                                       | 0.7  | 0.7  | 0.2 | 5.7          | 5.7       | 5.7     | 5.2 |  |  |
| 19 | Cavendish Homestead <sup>a</sup>                      | 2.8                                       | 3.1  | 2.6  | 1.0 | 7.8          | 8.1       | 7.6     | 6.0 |  |  |
| 20 | Colorado Homestead                                    | 1.8                                       | 1.6  | 1.3  | 0.6 | 6.8          | 6.6       | 6.3     | 5.6 |  |  |
| 21 | Corn Top Homestead <sup>a</sup>                       | 2.1                                       | 1.8  | 1.4  | 1.4 | 7.1          | 6.8       | 6.4     | 6.4 |  |  |
| 22 | Creek Farm Homestead                                  | 2.1                                       | 1.9  | 0.9  | 0.6 | 7.1          | 6.9       | 5.9     | 5.6 |  |  |
| 25 | Dwelling                                              | 1.5                                       | 1.0  | 0.8  | 0.5 | 6.5          | 6.0       | 5.8     | 5.5 |  |  |
| 26 | Dwelling                                              | 1.8                                       | 1.8  | 1.0  | 0.6 | 6.8          | 6.8       | 6.0     | 5.6 |  |  |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|    |                                           | Maximum 24-hour PM <sub>2.5</sub> (µg/m <sup>3</sup> ) |      |      |     |              |           |         |      |
|----|-------------------------------------------|--------------------------------------------------------|------|------|-----|--------------|-----------|---------|------|
| חו | Namo                                      |                                                        | Pro  | ject |     | Pro          | ject plus | backgro | und  |
|    | Name                                      | Overl<br>oad                                           | 100% | 60%  | 25% | Overl<br>oad | 100%      | 60%     | 25%  |
| 27 | Dwelling                                  | 2.2                                                    | 1.6  | 1.0  | 0.6 | 7.2          | 6.6       | 6.0     | 5.6  |
| 28 | Dwelling                                  | 1.3                                                    | 1.2  | 1.0  | 0.5 | 6.3          | 6.2       | 6.0     | 5.5  |
| 29 | Dwelling                                  | 1.5                                                    | 1.3  | 1.0  | 1.0 | 6.5          | 6.3       | 6.0     | 6.0  |
| 30 | Dwelling                                  | 1.4                                                    | 1.3  | 1.0  | 0.6 | 6.4          | 6.3       | 6.0     | 5.6  |
| 31 | Dwelling                                  | 1.8                                                    | 1.7  | 1.6  | 0.4 | 6.8          | 6.7       | 6.6     | 5.4  |
| 32 | Dwelling                                  | 1.2                                                    | 1.1  | 0.8  | 0.8 | 6.2          | 6.1       | 5.8     | 5.8  |
| 33 | Dwelling                                  | 1.2                                                    | 1.1  | 0.8  | 0.6 | 6.2          | 6.1       | 5.8     | 5.6  |
| 34 | Dwelling                                  | 1.0                                                    | 0.8  | 0.5  | 0.5 | 6.0          | 5.8       | 5.5     | 5.5  |
| 35 | Dwelling                                  | 1.0                                                    | 0.9  | 0.6  | 0.6 | 6.0          | 5.9       | 5.6     | 5.6  |
| 36 | Dwelling                                  | 1.4                                                    | 1.5  | 0.6  | 0.4 | 6.4          | 6.5       | 5.6     | 5.4  |
| 37 | Dwelling                                  | 1.0                                                    | 0.9  | 0.7  | 0.6 | 6.0          | 5.9       | 5.7     | 5.6  |
| 38 | Dwelling?                                 | 0.9                                                    | 0.8  | 0.6  | 0.5 | 5.9          | 5.8       | 5.6     | 5.5  |
| 39 | Edwinstowe Homestead                      | 1.9                                                    | 1.6  | 0.8  | 0.7 | 6.9          | 6.6       | 5.8     | 5.7  |
| 40 | Elphin Homestead                          | 1.0                                                    | 1.5  | 0.8  | 0.3 | 6.0          | 6.5       | 5.8     | 5.3  |
| 41 | Eulimbie Homestead                        | 1.0                                                    | 0.9  | 0.6  | 0.3 | 6.0          | 5.9       | 5.6     | 5.3  |
| 42 | Eureka Homestead                          | 3.3                                                    | 3.2  | 2.5  | 1.0 | 8.3          | 8.2       | 7.5     | 6.0  |
| 44 | Gadwell Homestead                         | 1.2                                                    | 1.0  | 0.6  | 0.6 | 6.2          | 6.0       | 5.6     | 5.6  |
| 46 | Glen Innes Homestead <sup>a</sup>         | 6.1                                                    | 6.2  | 6.5  | 2.2 | 11.1         | 11.2      | 11.5    | 7.2  |
| 47 | Hazelbrook Homestead                      | 1.2                                                    | 1.0  | 0.5  | 0.4 | 6.2          | 6.0       | 5.5     | 5.4  |
| 49 | Hobartville Homestead <sup>b</sup>        | 3.6                                                    | 3.4  | 5.1  | 3.7 | 8.6          | 8.4       | 10.1    | 8.7  |
| 50 | Inverurie Homestead                       | 1.5                                                    | 2.7  | 1.0  | 0.9 | 6.5          | 7.7       | 6.0     | 5.9  |
| 51 | Islay Plains Homestead                    | 1.3                                                    | 1.1  | 0.8  | 0.6 | 6.3          | 6.1       | 5.8     | 5.6  |
| 52 | Jericho                                   | 2.3                                                    | 1.9  | 1.3  | 0.5 | 7.3          | 6.9       | 6.3     | 5.5  |
| 53 | Jordan Avon Homestead                     | 2.0                                                    | 1.7  | 1.1  | 0.7 | 7.0          | 6.7       | 6.1     | 5.7  |
| 54 | Kalbar Homestead                          | 0.5                                                    | 0.5  | 0.3  | 0.2 | 5.5          | 5.5       | 5.3     | 5.2  |
| 55 | Kerand Homestead                          | 0.3                                                    | 0.3  | 0.2  | 0.1 | 5.3          | 5.3       | 5.2     | 5.1  |
| 56 | Kia Ora Homestead <sup>a</sup>            | 5.5                                                    | 5.0  | 2.8  | 1.5 | 10.5         | 10.0      | 7.8     | 6.5  |
| 57 | Lambton Meadows<br>Homestead <sup>a</sup> | 2.2                                                    | 2.8  | 4.3  | 1.0 | 7.2          | 7.8       | 9.3     | 6.0  |
| 59 | Locharnoch                                | 1.6                                                    | 1.5  | 1.4  | 0.6 | 6.6          | 6.5       | 6.4     | 5.6  |
| 60 | Melton Homestead                          | 0.5                                                    | 0.5  | 0.4  | 0.3 | 5.5          | 5.5       | 5.4     | 5.3  |
| 61 | Mentmore Homestead                        | 1.5                                                    | 1.5  | 1.4  | 0.7 | 6.5          | 6.5       | 6.4     | 5.7  |
| 62 | Milangavla                                | 2.0                                                    | 1.7  | 2.1  | 0.6 | 7.0          | 6.7       | 7.1     | 5.6  |
| 63 | Monklands <sup>a</sup>                    | 9.4                                                    | 9.2  | 8.0  | 6.1 | 14.4         | 14.2      | 13.0    | 11.1 |
| 64 | Moonstone Homestead                       | 1.2                                                    | 1.3  | 1.3  | 0.7 | 6.2          | 6.3       | 6.3     | 5.7  |
| 65 | Mossvale Homestead                        | 1.9                                                    | 1.6  | 0.7  | 0.7 | 6.9          | 6.6       | 5.7     | 5.7  |
| 67 | Oakleigh Homestead                        | 3.1                                                    | 2.9  | 1.7  | 0.8 | 8.1          | 7.9       | 6.7     | 5.8  |
| 68 | Quarry?                                   | 2.1                                                    | 1.8  | 1.4  | 0.4 | 7.1          | 6.8       | 6.4     | 5.4  |
| 69 | Racecourse                                | 2.3                                                    | 2.0  | 1.4  | 0.5 | 7.3          | 7.0       | 6.4     | 5.5  |
| 70 | Racecourse                                | 1.2                                                    | 1.1  | 0.7  | 0.7 | 6.2          | 6.1       | 5.7     | 5.7  |
| 72 | Rosedale Homestead                        | 1.3                                                    | 0.8  | 0.6  | 0.5 | 6.3          | 5.8       | 5.6     | 5.5  |
| 73 | Rosefield Homestead                       | 2.3                                                    | 2.3  | 1.5  | 0.8 | 7.3          | 7.3       | 6.5     | 5.8  |

|         |                                  | Maximum 24-hour PM <sub>2.5</sub> (µg/m³) |      |      |     |                         |      |      |     |  |  |
|---------|----------------------------------|-------------------------------------------|------|------|-----|-------------------------|------|------|-----|--|--|
| п       | Name                             |                                           | Pro  | ject |     | Project plus background |      |      |     |  |  |
|         |                                  | Overl<br>oad                              | 100% | 60%  | 25% | Overl<br>oad            | 100% | 60%  | 25% |  |  |
| 74      | Salt Bush Homestead              | 2.0                                       | 1.8  | 1.3  | 1.3 | 7.0                     | 6.8  | 6.3  | 6.3 |  |  |
| 75      | Speculation Homestead            | 0.8                                       | 1.2  | 0.9  | 0.5 | 5.8                     | 6.2  | 5.9  | 5.5 |  |  |
| 76      | Spring Creek <sup>a</sup>        | 2.3                                       | 2.6  | 2.2  | 0.9 | 7.3                     | 7.6  | 7.2  | 5.9 |  |  |
| 79      | Surbiton Homestead               | 0.9                                       | 0.8  | 0.9  | 0.4 | 5.9                     | 5.8  | 5.9  | 5.4 |  |  |
| 80      | Surbiton Station                 | 1.0                                       | 1.0  | 1.1  | 0.5 | 6.0                     | 6.0  | 6.1  | 5.5 |  |  |
| 81      | The Grove Homestead              | 1.6                                       | 1.5  | 0.9  | 0.3 | 6.6                     | 6.5  | 5.9  | 5.3 |  |  |
| 82      | Toarbee                          | 1.6                                       | 1.8  | 1.4  | 0.8 | 6.6                     | 6.8  | 6.4  | 5.8 |  |  |
| 84      | Tressillian Homestead            | 1.4                                       | 1.2  | 1.0  | 0.6 | 6.4                     | 6.2  | 6.0  | 5.6 |  |  |
| 85      | Villafield Homestead             | 2.4                                       | 2.0  | 1.0  | 0.7 | 7.4                     | 7.0  | 6.0  | 5.7 |  |  |
| 86      | Wendouree Homestead <sup>b</sup> | 3.3                                       | 2.8  | 1.7  | 1.3 | 8.3                     | 7.8  | 6.7  | 6.3 |  |  |
| 87      | Woodbrook Homestead              | 0.4                                       | 0.3  | 0.2  | 0.1 | 5.4                     | 5.3  | 5.2  | 5.1 |  |  |
| 88      | Wycheproof Homestead             | 0.9                                       | 1.0  | 0.6  | 0.2 | 5.9                     | 6.0  | 5.6  | 5.2 |  |  |
| 89      | Zeta Homestead                   | 0.9                                       | 0.9  | 0.7  | 0.4 | 5.9                     | 5.9  | 5.7  | 5.4 |  |  |
| -       | Workers' Camp                    | 11.7                                      | 11.3 | 7.7  | 4.6 | 16.7                    | 16.3 | 12.7 | 9.6 |  |  |
|         | Background included              | -                                         | -    | -    | -   | 5.0                     | 5.0  | 5.0  | 5.0 |  |  |
|         | Objective                        | -                                         | -    | -    | -   | 25                      | 25   | 25   | 25  |  |  |
| Table r | Table note:                      |                                           |      |      |     |                         |      |      |     |  |  |

<sup>a</sup> These receptors will be acquired by Waratah <sup>b</sup> These receptors will be acquired by Alpha Coal

| Table B8 | 1,400 MW – Predicted annual average ground-level concentrations of PM2.5 due to |
|----------|---------------------------------------------------------------------------------|
|          | Project in isolation and with background                                        |
|          |                                                                                 |

|    |                                                       | Annual PM <sub>2.5</sub> (μg/m³) |      |      |      |                         |      |     |     |  |
|----|-------------------------------------------------------|----------------------------------|------|------|------|-------------------------|------|-----|-----|--|
| ID | Name                                                  |                                  | Pro  | ject |      | Project plus background |      |     |     |  |
|    |                                                       | Overl<br>oad                     | 100% | 60%  | 25%  | Overl<br>oad            | 100% | 60% | 25% |  |
| 0  | Dwelling                                              | 0.07                             | 0.06 | 0.04 | 0.02 | 4.5                     | 4.5  | 4.4 | 4.4 |  |
| 1  | Dwelling                                              | 0.11                             | 0.10 | 0.07 | 0.04 | 4.5                     | 4.5  | 4.5 | 4.4 |  |
| 2  | Dwelling                                              | 0.03                             | 0.03 | 0.02 | 0.01 | 4.4                     | 4.4  | 4.4 | 4.4 |  |
| 5  | Accommodation Village -<br>Alpha Coal Project         | 0.07                             | 0.06 | 0.04 | 0.03 | 4.5                     | 4.5  | 4.4 | 4.4 |  |
| 6  | Accommodation Village -<br>South Galilee Coal Project | 0.08                             | 0.08 | 0.06 | 0.04 | 4.5                     | 4.5  | 4.5 | 4.4 |  |
| 7  | Airfield                                              | 0.12                             | 0.11 | 0.08 | 0.04 | 4.5                     | 4.5  | 4.5 | 4.4 |  |
| 8  | Alpha                                                 | 0.05                             | 0.04 | 0.03 | 0.02 | 4.4                     | 4.4  | 4.4 | 4.4 |  |
| 9  | Alpha Coal Bulk Sample                                | 0.13                             | 0.12 | 0.10 | 0.07 | 4.5                     | 4.5  | 4.5 | 4.5 |  |
| 10 | Beaufort Homestead                                    | 0.02                             | 0.02 | 0.01 | 0.01 | 4.4                     | 4.4  | 4.4 | 4.4 |  |
| 11 | Bedford Homestead                                     | 0.05                             | 0.05 | 0.03 | 0.02 | 4.5                     | 4.4  | 4.4 | 4.4 |  |
| 12 | Betanga Homestead                                     | 0.11                             | 0.10 | 0.08 | 0.06 | 4.5                     | 4.5  | 4.5 | 4.5 |  |
| 13 | Blairgowrie                                           | 0.06                             | 0.05 | 0.04 | 0.03 | 4.5                     | 4.5  | 4.4 | 4.4 |  |
| 14 | Bonanza Homestead                                     | 0.07                             | 0.06 | 0.04 | 0.03 | 4.5                     | 4.5  | 4.4 | 4.4 |  |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|    |                                           |              |      | A    | nnual PN | l <sub>2.5</sub> (µg/m | <sup>3</sup> ) |                 |     |  |
|----|-------------------------------------------|--------------|------|------|----------|------------------------|----------------|-----------------|-----|--|
| חו | Namo                                      |              | Pro  | ject |          | Pro                    | ject plus      | olus background |     |  |
|    | Name                                      | Overl<br>oad | 100% | 60%  | 25%      | Overl<br>oad           | 100%           | 60%             | 25% |  |
| 16 | Burgoyne Homestead                        | 0.08         | 0.07 | 0.06 | 0.03     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 17 | Burtle Homestead                          | 0.06         | 0.05 | 0.04 | 0.02     | 4.5                    | 4.5            | 4.4             | 4.4 |  |
| 18 | Carinya Homestead                         | 0.02         | 0.02 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 19 | Cavendish Homestead <sup>a</sup>          | 0.22         | 0.20 | 0.16 | 0.09     | 4.6                    | 4.6            | 4.6             | 4.5 |  |
| 20 | Colorado Homestead                        | 0.10         | 0.09 | 0.06 | 0.03     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 21 | Corn Top Homestead <sup>a</sup>           | 0.11         | 0.10 | 0.08 | 0.06     | 4.5                    | 4.5            | 4.5             | 4.5 |  |
| 22 | Creek Farm Homestead                      | 0.08         | 0.07 | 0.05 | 0.03     | 4.5                    | 4.5            | 4.4             | 4.4 |  |
| 25 | Dwelling                                  | 0.10         | 0.09 | 0.06 | 0.04     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 26 | Dwelling                                  | 0.11         | 0.10 | 0.07 | 0.04     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 27 | Dwelling                                  | 0.11         | 0.10 | 0.07 | 0.04     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 28 | Dwelling                                  | 0.09         | 0.08 | 0.05 | 0.03     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 29 | Dwelling                                  | 0.12         | 0.11 | 0.07 | 0.04     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 30 | Dwelling                                  | 0.08         | 0.07 | 0.05 | 0.03     | 4.5                    | 4.5            | 4.4             | 4.4 |  |
| 31 | Dwelling                                  | 0.11         | 0.09 | 0.07 | 0.04     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 32 | Dwelling                                  | 0.05         | 0.05 | 0.03 | 0.02     | 4.5                    | 4.4            | 4.4             | 4.4 |  |
| 33 | Dwelling                                  | 0.05         | 0.05 | 0.04 | 0.02     | 4.5                    | 4.4            | 4.4             | 4.4 |  |
| 34 | Dwelling                                  | 0.04         | 0.04 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 35 | Dwelling                                  | 0.04         | 0.03 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 36 | Dwelling                                  | 0.04         | 0.04 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 37 | Dwelling                                  | 0.04         | 0.03 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 38 | Dwelling?                                 | 0.04         | 0.03 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 39 | Edwinstowe Homestead                      | 0.09         | 0.08 | 0.06 | 0.03     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 40 | Elphin Homestead                          | 0.04         | 0.04 | 0.03 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 41 | Eulimbie Homestead                        | 0.03         | 0.03 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 42 | Eureka Homestead                          | 0.16         | 0.15 | 0.10 | 0.06     | 4.6                    | 4.5            | 4.5             | 4.5 |  |
| 44 | Gadwell Homestead                         | 0.05         | 0.04 | 0.03 | 0.02     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 46 | Glen Innes Homestead <sup>a</sup>         | 0.43         | 0.39 | 0.30 | 0.17     | 4.8                    | 4.8            | 4.7             | 4.6 |  |
| 47 | Hazelbrook Homestead                      | 0.04         | 0.04 | 0.03 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 49 | Hobartville Homestead <sup>b</sup>        | 0.18         | 0.17 | 0.14 | 0.09     | 4.6                    | 4.6            | 4.5             | 4.5 |  |
| 50 | Inverurie Homestead                       | 0.14         | 0.13 | 0.09 | 0.05     | 4.5                    | 4.5            | 4.5             | 4.5 |  |
| 51 | Islay Plains Homestead                    | 0.02         | 0.02 | 0.01 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 52 | Jericho                                   | 0.11         | 0.10 | 0.07 | 0.04     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 53 | Jordan Avon Homestead                     | 0.15         | 0.13 | 0.09 | 0.05     | 4.5                    | 4.5            | 4.5             | 4.5 |  |
| 54 | Kalbar Homestead                          | 0.02         | 0.02 | 0.01 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 55 | Kerand Homestead                          | 0.02         | 0.01 | 0.01 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 56 | Kia Ora Homestead <sup>a</sup>            | 0.34         | 0.31 | 0.25 | 0.14     | 4.7                    | 4.7            | 4.6             | 4.5 |  |
| 57 | Lambton Meadows<br>Homestead <sup>a</sup> | 0.17         | 0.16 | 0.12 | 0.07     | 4.6                    | 4.6            | 4.5             | 4.5 |  |
| 59 | Locharnoch                                | 0.12         | 0.11 | 0.08 | 0.04     | 4.5                    | 4.5            | 4.5             | 4.4 |  |
| 60 | Melton Homestead                          | 0.02         | 0.02 | 0.01 | 0.01     | 4.4                    | 4.4            | 4.4             | 4.4 |  |
| 61 | Mentmore Homestead                        | 0.06         | 0.06 | 0.04 | 0.03     | 4.5                    | 4.5            | 4.4             | 4.4 |  |
| 62 | Milangavla                                | 0.17         | 0.15 | 0.11 | 0.06     | 4.6                    | 4.5            | 4.5             | 4.5 |  |

|         |                                  |              |      | A    | nnual PN | l <sub>2.5</sub> (µg/m | <sup>3</sup> ) |         |     |
|---------|----------------------------------|--------------|------|------|----------|------------------------|----------------|---------|-----|
| ID      | Name                             |              | Pro  | ject |          | Pro                    | ject plus      | backgro | und |
|         |                                  | Overl<br>oad | 100% | 60%  | 25%      | Overl<br>oad           | 100%           | 60%     | 25% |
| 63      | Monklands <sup>a</sup>           | 0.73         | 0.74 | 0.74 | 0.58     | 5.1                    | 5.1            | 5.1     | 5.0 |
| 64      | Moonstone Homestead              | 0.04         | 0.03 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4     | 4.4 |
| 65      | Mossvale Homestead               | 0.05         | 0.04 | 0.03 | 0.02     | 4.4                    | 4.4            | 4.4     | 4.4 |
| 67      | Oakleigh Homestead               | 0.11         | 0.11 | 0.08 | 0.05     | 4.5                    | 4.5            | 4.5     | 4.4 |
| 68      | Quarry?                          | 0.12         | 0.11 | 0.07 | 0.04     | 4.5                    | 4.5            | 4.5     | 4.4 |
| 69      | Racecourse                       | 0.11         | 0.10 | 0.07 | 0.04     | 4.5                    | 4.5            | 4.5     | 4.4 |
| 70      | Racecourse                       | 0.06         | 0.06 | 0.04 | 0.02     | 4.5                    | 4.5            | 4.4     | 4.4 |
| 72      | Rosedale Homestead               | 0.07         | 0.06 | 0.04 | 0.03     | 4.5                    | 4.5            | 4.4     | 4.4 |
| 73      | Rosefield Homestead              | 0.16         | 0.14 | 0.10 | 0.06     | 4.6                    | 4.5            | 4.5     | 4.5 |
| 74      | Salt Bush Homestead              | 0.13         | 0.12 | 0.09 | 0.05     | 4.5                    | 4.5            | 4.5     | 4.4 |
| 75      | Speculation Homestead            | 0.06         | 0.06 | 0.05 | 0.03     | 4.5                    | 4.5            | 4.5     | 4.4 |
| 76      | Spring Creek <sup>a</sup>        | 0.21         | 0.19 | 0.14 | 0.08     | 4.6                    | 4.6            | 4.5     | 4.5 |
| 79      | Surbiton Homestead               | 0.04         | 0.04 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4     | 4.4 |
| 80      | Surbiton Station                 | 0.03         | 0.03 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4     | 4.4 |
| 81      | The Grove Homestead              | 0.04         | 0.04 | 0.03 | 0.01     | 4.4                    | 4.4            | 4.4     | 4.4 |
| 82      | Toarbee                          | 0.10         | 0.10 | 0.07 | 0.04     | 4.5                    | 4.5            | 4.5     | 4.4 |
| 84      | Tressillian Homestead            | 0.07         | 0.06 | 0.04 | 0.02     | 4.5                    | 4.5            | 4.4     | 4.4 |
| 85      | Villafield Homestead             | 0.08         | 0.07 | 0.05 | 0.03     | 4.5                    | 4.5            | 4.4     | 4.4 |
| 86      | Wendouree Homestead <sup>b</sup> | 0.10         | 0.09 | 0.06 | 0.04     | 4.5                    | 4.5            | 4.5     | 4.4 |
| 87      | Woodbrook Homestead              | 0.01         | 0.01 | 0.01 | 0.00     | 4.4                    | 4.4            | 4.4     | 4.4 |
| 88      | Wycheproof Homestead             | 0.02         | 0.02 | 0.01 | 0.01     | 4.4                    | 4.4            | 4.4     | 4.4 |
| 89      | Zeta Homestead                   | 0.03         | 0.03 | 0.02 | 0.01     | 4.4                    | 4.4            | 4.4     | 4.4 |
| -       | Workers' Camp                    | 0.34         | 0.34 | 0.32 | 0.20     | 4.7                    | 4.7            | 4.7     | 4.6 |
|         | Background included              | -            | -    | -    | -        | 4.4                    | 4.4            | 4.4     | 4.4 |
|         | Objective                        | -            | -    | -    | -        | 8.0                    | 8.0            | 8.0     | 8.0 |
| Table r | note:                            | atah         |      |      |          |                        |                |         |     |

## 1,400 MW – Predicted annual average ground-level concentrations of arsenic due to Project in isolation Table B9

| ID | Namo                                                  | Annual arsenic (µg/m³) |         |         |         |  |  |  |
|----|-------------------------------------------------------|------------------------|---------|---------|---------|--|--|--|
| U  | Name                                                  | Overload               | 100%    | 60%     | 25%     |  |  |  |
| 0  | Dwelling                                              | 2.8E-07                | 2.6E-07 | 1.8E-07 | 9.4E-08 |  |  |  |
| 1  | Dwelling                                              | 4.5E-07                | 4.1E-07 | 2.8E-07 | 1.6E-07 |  |  |  |
| 2  | Dwelling                                              | 1.2E-07                | 1.1E-07 | 7.5E-08 | 4.1E-08 |  |  |  |
| 5  | Accommodation Village - Alpha Coal Project            | 2.7E-07                | 2.5E-07 | 1.7E-07 | 1.0E-07 |  |  |  |
| 6  | Accommodation Village - South Galilee Coal<br>Project | 3.5E-07                | 3.3E-07 | 2.6E-07 | 1.6E-07 |  |  |  |
| 7  | Airfield                                              | 5.1E-07                | 4.6E-07 | 3.2E-07 | 1.7E-07 |  |  |  |
| 8  | Alpha                                                 | 2.0E-07                | 1.8E-07 | 1.3E-07 | 8.0E-08 |  |  |  |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

| ID | Neme                                   | Annual arsenic (μg/m³) |         |         |         |  |  |  |
|----|----------------------------------------|------------------------|---------|---------|---------|--|--|--|
|    | Name                                   | Overload               | 100%    | 60%     | 25%     |  |  |  |
| 9  | Alpha Coal Bulk Sample                 | 5.2E-07                | 5.0E-07 | 4.0E-07 | 2.9E-07 |  |  |  |
| 10 | Beaufort Homestead                     | 8.6E-08                | 7.8E-08 | 5.4E-08 | 3.1E-08 |  |  |  |
| 11 | Bedford Homestead                      | 2.1E-07                | 1.9E-07 | 1.4E-07 | 9.8E-08 |  |  |  |
| 12 | Betanga Homestead                      | 4.4E-07                | 4.0E-07 | 3.1E-07 | 2.3E-07 |  |  |  |
| 13 | Blairgowrie                            | 2.5E-07                | 2.3E-07 | 1.7E-07 | 1.1E-07 |  |  |  |
| 14 | Bonanza Homestead                      | 3.0E-07                | 2.7E-07 | 1.8E-07 | 1.1E-07 |  |  |  |
| 16 | Burgoyne Homestead                     | 3.5E-07                | 3.0E-07 | 2.3E-07 | 1.2E-07 |  |  |  |
| 17 | Burtle Homestead                       | 2.5E-07                | 2.2E-07 | 1.5E-07 | 8.1E-08 |  |  |  |
| 18 | Carinya Homestead                      | 9.0E-08                | 8.1E-08 | 6.3E-08 | 3.0E-08 |  |  |  |
| 19 | Cavendish Homestead <sup>a</sup>       | 9.1E-07                | 8.4E-07 | 6.5E-07 | 3.7E-07 |  |  |  |
| 20 | Colorado Homestead                     | 4.2E-07                | 3.7E-07 | 2.4E-07 | 1.4E-07 |  |  |  |
| 21 | Corn Top Homestead <sup>a</sup>        | 4.6E-07                | 4.2E-07 | 3.2E-07 | 2.5E-07 |  |  |  |
| 22 | Creek Farm Homestead                   | 3.2E-07                | 3.0E-07 | 2.0E-07 | 1.1E-07 |  |  |  |
| 25 | Dwelling                               | 4.1E-07                | 3.6E-07 | 2.5E-07 | 1.5E-07 |  |  |  |
| 26 | Dwelling                               | 4.4E-07                | 4.0E-07 | 2.7E-07 | 1.6E-07 |  |  |  |
| 27 | Dwelling                               | 4.7E-07                | 4.2E-07 | 2.8E-07 | 1.6E-07 |  |  |  |
| 28 | Dwelling                               | 3.6E-07                | 3.2E-07 | 2.3E-07 | 1.2E-07 |  |  |  |
| 29 | Dwelling                               | 4.9E-07                | 4.4E-07 | 3.0E-07 | 1.7E-07 |  |  |  |
| 30 | Dwelling                               | 3.3E-07                | 3.0E-07 | 2.0E-07 | 1.2E-07 |  |  |  |
| 31 | Dwelling                               | 4.3E-07                | 3.9E-07 | 2.8E-07 | 1.5E-07 |  |  |  |
| 32 | Dwelling                               | 2.2E-07                | 2.0E-07 | 1.4E-07 | 8.8E-08 |  |  |  |
| 33 | Dwelling                               | 2.3E-07                | 2.0E-07 | 1.5E-07 | 8.4E-08 |  |  |  |
| 34 | Dwelling                               | 1.7E-07                | 1.5E-07 | 1.0E-07 | 5.9E-08 |  |  |  |
| 35 | Dwelling                               | 1.6E-07                | 1.4E-07 | 1.0E-07 | 5.7E-08 |  |  |  |
| 36 | Dwelling                               | 1.6E-07                | 1.5E-07 | 9.5E-08 | 5.2E-08 |  |  |  |
| 37 | Dwelling                               | 1.5E-07                | 1.3E-07 | 9.3E-08 | 5.4E-08 |  |  |  |
| 38 | Dwelling?                              | 1.5E-07                | 1.4E-07 | 9.5E-08 | 5.6E-08 |  |  |  |
| 39 | Edwinstowe Homestead                   | 3.7E-07                | 3.4E-07 | 2.3E-07 | 1.3E-07 |  |  |  |
| 40 | Elphin Homestead                       | 1.6E-07                | 1.5E-07 | 1.1E-07 | 5.9E-08 |  |  |  |
| 41 | Eulimbie Homestead                     | 1.2E-07                | 1.0E-07 | 7.6E-08 | 4.8E-08 |  |  |  |
| 42 | Eureka Homestead                       | 6.6E-07                | 6.1E-07 | 4.1E-07 | 2.6E-07 |  |  |  |
| 44 | Gadwell Homestead                      | 2.0E-07                | 1.8E-07 | 1.3E-07 | 8.3E-08 |  |  |  |
| 46 | Glen Innes Homestead <sup>a</sup>      | 1.8E-06                | 1.6E-06 | 1.2E-06 | 6.9E-07 |  |  |  |
| 47 | Hazelbrook Homestead                   | 1.8E-07                | 1.6E-07 | 1.1E-07 | 5.9E-08 |  |  |  |
| 49 | Hobartville Homestead <sup>b</sup>     | 7.4E-07                | 7.1E-07 | 5.9E-07 | 3.7E-07 |  |  |  |
| 50 | Inverurie Homestead                    | 5.8E-07                | 5.4E-07 | 3.7E-07 | 2.2E-07 |  |  |  |
| 51 | Islay Plains Homestead                 | 7.8E-08                | 6.9E-08 | 5.1E-08 | 2.9E-08 |  |  |  |
| 52 | Jericho                                | 4.6E-07                | 4.1E-07 | 2.9E-07 | 1.6E-07 |  |  |  |
| 53 | Jordan Avon Homestead                  | 6.0E-07                | 5.4E-07 | 3.8E-07 | 2.1E-07 |  |  |  |
| 54 | Kalbar Homestead                       | 9.7E-08                | 8.9E-08 | 6.2E-08 | 3.3E-08 |  |  |  |
| 55 | Kerand Homestead                       | 6.6E-08                | 6.0E-08 | 4.2E-08 | 2.2E-08 |  |  |  |
| 56 | Kia Ora Homestead <sup>a</sup>         | 1.4E-06                | 1.3E-06 | 1.0E-06 | 5.8E-07 |  |  |  |
| 57 | Lambton Meadows Homestead <sup>a</sup> | 7.0E-07                | 6.6E-07 | 5.1E-07 | 2.8E-07 |  |  |  |

|                          | Nome                                                                    |          | Annual arse | enic (µg/m³) |         |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------|----------|-------------|--------------|---------|--|--|--|--|
| ID                       | Name                                                                    | Overload | 100%        | 60%          | 25%     |  |  |  |  |
| 59                       | Locharnoch                                                              | 4.8E-07  | 4.5E-07     | 3.3E-07      | 1.6E-07 |  |  |  |  |
| 60                       | Melton Homestead                                                        | 8.7E-08  | 7.7E-08     | 5.7E-08      | 3.5E-08 |  |  |  |  |
| 61                       | Mentmore Homestead                                                      | 2.7E-07  | 2.4E-07     | 1.8E-07      | 1.1E-07 |  |  |  |  |
| 62                       | Milangavla                                                              | 6.8E-07  | 6.1E-07     | 4.5E-07      | 2.4E-07 |  |  |  |  |
| 63                       | Monklands <sup>a</sup>                                                  | 3.0E-06  | 3.0E-06     | 3.1E-06      | 2.4E-06 |  |  |  |  |
| 64                       | Moonstone Homestead                                                     | 1.5E-07  | 1.4E-07     | 1.0E-07      | 5.5E-08 |  |  |  |  |
| 65                       | Mossvale Homestead                                                      | 1.9E-07  | 1.7E-07     | 1.1E-07      | 6.4E-08 |  |  |  |  |
| 67                       | Oakleigh Homestead                                                      | 4.6E-07  | 4.5E-07     | 3.4E-07      | 1.9E-07 |  |  |  |  |
| 68                       | Quarry?                                                                 | 4.9E-07  | 4.4E-07     | 3.1E-07      | 1.6E-07 |  |  |  |  |
| 69                       | Racecourse                                                              | 4.7E-07  | 4.2E-07     | 3.0E-07      | 1.6E-07 |  |  |  |  |
| 70                       | Racecourse                                                              | 2.6E-07  | 2.3E-07     | 1.6E-07      | 9.6E-08 |  |  |  |  |
| 72                       | Rosedale Homestead                                                      | 2.8E-07  | 2.5E-07     | 1.6E-07      | 1.0E-07 |  |  |  |  |
| 73                       | Rosefield Homestead                                                     | 6.6E-07  | 5.9E-07     | 4.0E-07      | 2.3E-07 |  |  |  |  |
| 74                       | Salt Bush Homestead                                                     | 5.3E-07  | 4.9E-07     | 3.6E-07      | 1.9E-07 |  |  |  |  |
| 75                       | Speculation Homestead                                                   | 2.4E-07  | 2.3E-07     | 2.2E-07      | 1.4E-07 |  |  |  |  |
| 76                       | Spring Creek <sup>a</sup>                                               | 8.5E-07  | 7.7E-07     | 5.7E-07      | 3.2E-07 |  |  |  |  |
| 79                       | Surbiton Homestead                                                      | 1.6E-07  | 1.4E-07     | 1.0E-07      | 5.9E-08 |  |  |  |  |
| 80                       | Surbiton Station                                                        | 1.2E-07  | 1.1E-07     | 8.4E-08      | 5.0E-08 |  |  |  |  |
| 81                       | The Grove Homestead                                                     | 1.8E-07  | 1.6E-07     | 1.2E-07      | 5.8E-08 |  |  |  |  |
| 82                       | Toarbee                                                                 | 4.3E-07  | 4.1E-07     | 2.8E-07      | 1.7E-07 |  |  |  |  |
| 84                       | Tressillian Homestead                                                   | 2.8E-07  | 2.5E-07     | 1.8E-07      | 9.5E-08 |  |  |  |  |
| 85                       | Villafield Homestead                                                    | 3.2E-07  | 2.9E-07     | 2.0E-07      | 1.1E-07 |  |  |  |  |
| 86                       | Wendouree Homestead <sup>b</sup>                                        | 3.9E-07  | 3.6E-07     | 2.7E-07      | 1.7E-07 |  |  |  |  |
| 87                       | Woodbrook Homestead                                                     | 5.7E-08  | 5.2E-08     | 3.5E-08      | 1.8E-08 |  |  |  |  |
| 88                       | Wycheproof Homestead                                                    | 8.0E-08  | 7.5E-08     | 4.8E-08      | 2.3E-08 |  |  |  |  |
| 89                       | Zeta Homestead                                                          | 1.2E-07  | 1.1E-07     | 8.8E-08      | 5.1E-08 |  |  |  |  |
| -                        | Workers' Camp                                                           | 1.4E-06  | 1.4E-06     | 1.3E-06      | 8.2E-07 |  |  |  |  |
|                          | Objective                                                               | 6E-03    | 6E-03       | 6E-03        | 6E-03   |  |  |  |  |
| Table note<br>a These re | Table note:<br><sup>a</sup> These receptors will be acquired by Waratah |          |             |              |         |  |  |  |  |

## 1,400 MW – Predicted 1-hour and annual average ground-level concentrations of boron due to Project in isolation Table B10

| ID | Name                        |              | 1-hour bor | on (µg/m³) |         | Annual boron (µg/m³) |         |         |         |  |
|----|-----------------------------|--------------|------------|------------|---------|----------------------|---------|---------|---------|--|
|    |                             | Overloa<br>d | 100%       | 60%        | 25%     | Overloa<br>d         | 100%    | 60%     | 25%     |  |
| 0  | Dwelling                    | 2.6E-03      | 2.2E-03    | 2.2E-03    | 9.4E-04 | 1.3E-05              | 1.2E-05 | 8.2E-06 | 4.3E-06 |  |
| 1  | Dwelling                    | 2.7E-03      | 2.6E-03    | 2.0E-03    | 1.2E-03 | 2.1E-05              | 1.9E-05 | 1.3E-05 | 7.3E-06 |  |
| 2  | Dwelling                    | 1.5E-03      | 1.4E-03    | 7.9E-04    | 4.2E-04 | 5.6E-06              | 4.9E-06 | 3.4E-06 | 1.9E-06 |  |
| 5  | Accommodat<br>ion Village - | 3.9E-03      | 3.7E-03    | 2.6E-03    | 1.5E-03 | 1.2E-05              | 1.1E-05 | 7.8E-06 | 4.7E-06 |  |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|    |                                                                 |              | 1-hour bor | on (µg/m³) |         | Annual boron (μg/m³) |         |         |         |  |
|----|-----------------------------------------------------------------|--------------|------------|------------|---------|----------------------|---------|---------|---------|--|
| ID | Name                                                            | Overloa<br>d | 100%       | 60%        | 25%     | Overloa<br>d         | 100%    | 60%     | 25%     |  |
|    | Alpha Coal<br>Project                                           |              |            |            |         |                      |         |         |         |  |
| 6  | Accommodat<br>ion Village -<br>South<br>Galilee Coal<br>Project | 3.1E-03      | 7.0E-03    | 8.7E-03    | 2.3E-03 | 1.6E-05              | 1.5E-05 | 1.2E-05 | 7.4E-06 |  |
| 7  | Airfield                                                        | 3.8E-03      | 3.4E-03    | 2.3E-03    | 1.0E-03 | 2.3E-05              | 2.1E-05 | 1.4E-05 | 7.6E-06 |  |
| 8  | Alpha                                                           | 2.4E-03      | 2.2E-03    | 1.5E-03    | 2.0E-03 | 9.1E-06              | 8.1E-06 | 5.7E-06 | 3.6E-06 |  |
| 9  | Alpha Coal<br>Bulk Sample                                       | 4.4E-03      | 4.7E-03    | 4.5E-03    | 4.3E-03 | 2.3E-05              | 2.3E-05 | 1.8E-05 | 1.3E-05 |  |
| 10 | Beaufort<br>Homestead                                           | 2.0E-03      | 1.6E-03    | 1.3E-03    | 5.7E-04 | 3.9E-06              | 3.5E-06 | 2.4E-06 | 1.4E-06 |  |
| 11 | Bedford<br>Homestead                                            | 1.9E-03      | 2.1E-03    | 1.6E-03    | 4.3E-03 | 9.7E-06              | 8.7E-06 | 6.3E-06 | 4.5E-06 |  |
| 12 | Betanga<br>Homestead                                            | 2.6E-03      | 2.2E-03    | 2.7E-03    | 1.9E-03 | 2.0E-05              | 1.8E-05 | 1.4E-05 | 1.0E-05 |  |
| 13 | Blairgowrie                                                     | 2.4E-03      | 2.3E-03    | 1.8E-03    | 1.3E-03 | 1.2E-05              | 1.0E-05 | 7.5E-06 | 5.0E-06 |  |
| 14 | Bonanza<br>Homestead                                            | 5.2E-03      | 3.8E-03    | 1.7E-03    | 2.3E-03 | 1.4E-05              | 1.2E-05 | 8.2E-06 | 4.8E-06 |  |
| 16 | Burgoyne<br>Homestead                                           | 2.1E-03      | 1.8E-03    | 2.3E-03    | 6.3E-04 | 1.6E-05              | 1.4E-05 | 1.1E-05 | 5.6E-06 |  |
| 17 | Burtle<br>Homestead                                             | 2.9E-03      | 2.7E-03    | 1.4E-03    | 7.5E-04 | 1.1E-05              | 1.0E-05 | 6.7E-06 | 3.7E-06 |  |
| 18 | Carinya<br>Homestead                                            | 2.7E-03      | 2.7E-03    | 2.7E-03    | 6.6E-04 | 4.1E-06              | 3.7E-06 | 2.8E-06 | 1.4E-06 |  |
| 19 | Cavendish<br>Homestead <sup>a</sup>                             | 3.2E-03      | 3.0E-03    | 3.8E-03    | 1.5E-03 | 4.1E-05              | 3.8E-05 | 2.9E-05 | 1.7E-05 |  |
| 20 | Colorado<br>Homestead                                           | 5.4E-03      | 3.8E-03    | 2.2E-03    | 1.9E-03 | 1.9E-05              | 1.7E-05 | 1.1E-05 | 6.5E-06 |  |
| 21 | Corn Top<br>Homestead <sup>a</sup>                              | 3.8E-03      | 2.6E-03    | 1.4E-03    | 3.7E-03 | 2.1E-05              | 1.9E-05 | 1.4E-05 | 1.1E-05 |  |
| 22 | Creek Farm<br>Homestead                                         | 3.6E-03      | 2.8E-03    | 1.8E-03    | 8.3E-04 | 1.5E-05              | 1.3E-05 | 9.1E-06 | 5.0E-06 |  |
| 25 | Dwelling                                                        | 2.6E-03      | 1.9E-03    | 1.6E-03    | 9.0E-04 | 1.9E-05              | 1.6E-05 | 1.1E-05 | 6.7E-06 |  |
| 26 | Dwelling                                                        | 2.2E-03      | 2.5E-03    | 1.8E-03    | 1.6E-03 | 2.0E-05              | 1.8E-05 | 1.2E-05 | 7.2E-06 |  |
| 27 | Dwelling                                                        | 2.7E-03      | 2.6E-03    | 2.0E-03    | 1.3E-03 | 2.1E-05              | 1.9E-05 | 1.3E-05 | 7.4E-06 |  |
| 28 | Dwelling                                                        | 2.5E-03      | 2.3E-03    | 2.0E-03    | 8.1E-04 | 1.6E-05              | 1.5E-05 | 1.0E-05 | 5.5E-06 |  |
| 29 | Dwelling                                                        | 3.3E-03      | 2.5E-03    | 1.5E-03    | 1.7E-03 | 2.2E-05              | 2.0E-05 | 1.4E-05 | 7.5E-06 |  |
| 30 | Dwelling                                                        | 2.1E-03      | 2.9E-03    | 3.5E-03    | 1.4E-03 | 1.5E-05              | 1.4E-05 | 9.0E-06 | 5.4E-06 |  |
| 31 | Dwelling                                                        | 2.9E-03      | 2.2E-03    | 2.1E-03    | 1.0E-03 | 2.0E-05              | 1.8E-05 | 1.3E-05 | 6.6E-06 |  |
| 32 | Dwelling                                                        | 2.0E-03      | 2.0E-03    | 2.5E-03    | 2.2E-03 | 1.0E-05              | 8.9E-06 | 6.5E-06 | 4.0E-06 |  |
| 33 | Dwelling                                                        | 2.0E-03      | 2.0E-03    | 2.6E-03    | 1.5E-03 | 1.0E-05              | 9.1E-06 | 6.6E-06 | 3.8E-06 |  |
| 34 | Dwelling                                                        | 2.9E-03      | 2.5E-03    | 1.2E-03    | 1.7E-03 | 7.7E-06              | 6.8E-06 | 4.7E-06 | 2.7E-06 |  |
| 35 | Dwelling                                                        | 3.0E-03      | 2.1E-03    | 1.4E-03    | 1.9E-03 | 7.5E-06              | 6.5E-06 | 4.6E-06 | 2.6E-06 |  |
| 36 | Dwelling                                                        | 3.8E-03      | 4.8E-03    | 1.2E-03    | 1.0E-03 | 7.2E-06              | 6.7E-06 | 4.3E-06 | 2.4E-06 |  |
| 37 | Dwelling                                                        | 2.2E-03      | 2.4E-03    | 2.2E-03    | 2.3E-03 | 6.7E-06              | 6.0E-06 | 4.2E-06 | 2.5E-06 |  |
| 38 | Dwelling?                                                       | 2.3E-03      | 2.3E-03    | 1.9E-03    | 1.6E-03 | 6.9E-06              | 6.2E-06 | 4.3E-06 | 2.5E-06 |  |

|    |                                              |              | 1-hour bor | ron (µg/m³) |         |              | Annual bo | ron (µg/m³) | )       |
|----|----------------------------------------------|--------------|------------|-------------|---------|--------------|-----------|-------------|---------|
| ID | Name                                         | Overloa<br>d | 100%       | 60%         | 25%     | Overloa<br>d | 100%      | 60%         | 25%     |
| 39 | Edwinstowe<br>Homestead                      | 4.3E-03      | 3.4E-03    | 1.8E-03     | 1.3E-03 | 1.7E-05      | 1.5E-05   | 1.0E-05     | 5.8E-06 |
| 40 | Elphin<br>Homestead                          | 2.7E-03      | 5.0E-03    | 2.1E-03     | 1.5E-03 | 7.3E-06      | 6.8E-06   | 4.8E-06     | 2.7E-06 |
| 41 | Eulimbie<br>Homestead                        | 3.1E-03      | 2.5E-03    | 1.8E-03     | 9.3E-04 | 5.3E-06      | 4.7E-06   | 3.4E-06     | 2.2E-06 |
| 42 | Eureka<br>Homestead                          | 1.1E-02      | 8.1E-03    | 7.1E-03     | 2.3E-03 | 3.0E-05      | 2.8E-05   | 1.9E-05     | 1.2E-05 |
| 44 | Gadwell<br>Homestead                         | 4.7E-03      | 4.1E-03    | 1.4E-03     | 2.6E-03 | 9.2E-06      | 8.3E-06   | 5.8E-06     | 3.8E-06 |
| 46 | Glen Innes<br>Homestead <sup>a</sup>         | 6.9E-03      | 6.5E-03    | 4.6E-03     | 2.6E-03 | 8.0E-05      | 7.4E-05   | 5.6E-05     | 3.2E-05 |
| 47 | Hazelbrook<br>Homestead                      | 3.1E-03      | 2.3E-03    | 1.2E-03     | 1.3E-03 | 8.1E-06      | 7.1E-06   | 4.9E-06     | 2.7E-06 |
| 49 | Hobartville<br>Homestead <sup>b</sup>        | 4.1E-03      | 4.4E-03    | 5.3E-03     | 3.1E-03 | 3.4E-05      | 3.2E-05   | 2.7E-05     | 1.7E-05 |
| 50 | Inverurie<br>Homestead                       | 3.7E-03      | 5.7E-03    | 2.2E-03     | 2.3E-03 | 2.6E-05      | 2.5E-05   | 1.7E-05     | 1.0E-05 |
| 51 | Islay Plains<br>Homestead                    | 8.2E-04      | 8.0E-04    | 5.9E-04     | 7.3E-04 | 3.5E-06      | 3.1E-06   | 2.3E-06     | 1.3E-06 |
| 52 | Jericho                                      | 3.1E-03      | 2.4E-03    | 2.1E-03     | 9.7E-04 | 2.1E-05      | 1.9E-05   | 1.3E-05     | 7.2E-06 |
| 53 | Jordan Avon<br>Homestead                     | 4.3E-03      | 4.0E-03    | 2.5E-03     | 1.7E-03 | 2.8E-05      | 2.5E-05   | 1.7E-05     | 9.8E-06 |
| 54 | Kalbar<br>Homestead                          | 1.3E-03      | 1.1E-03    | 6.6E-04     | 3.9E-04 | 4.4E-06      | 4.1E-06   | 2.8E-06     | 1.5E-06 |
| 55 | Kerand<br>Homestead                          | 1.2E-03      | 1.0E-03    | 6.1E-04     | 2.9E-04 | 3.0E-06      | 2.8E-06   | 1.9E-06     | 1.0E-06 |
| 56 | Kia Ora<br>Homestead <sup>a</sup>            | 6.8E-03      | 5.6E-03    | 3.9E-03     | 3.8E-03 | 6.3E-05      | 5.9E-05   | 4.6E-05     | 2.6E-05 |
| 57 | Lambton<br>Meadows<br>Homestead <sup>a</sup> | 8.0E-03      | 5.8E-03    | 4.0E-03     | 2.3E-03 | 3.2E-05      | 3.0E-05   | 2.3E-05     | 1.3E-05 |
| 59 | Locharnoch                                   | 4.8E-03      | 4.4E-03    | 2.6E-03     | 1.1E-03 | 2.2E-05      | 2.0E-05   | 1.5E-05     | 7.2E-06 |
| 60 | Melton<br>Homestead                          | 2.1E-03      | 1.5E-03    | 8.7E-04     | 6.9E-04 | 4.0E-06      | 3.5E-06   | 2.6E-06     | 1.6E-06 |
| 61 | Mentmore<br>Homestead                        | 4.8E-03      | 4.3E-03    | 3.0E-03     | 2.2E-03 | 1.2E-05      | 1.1E-05   | 8.2E-06     | 5.0E-06 |
| 62 | Milangavla                                   | 3.2E-03      | 3.6E-03    | 6.3E-03     | 1.7E-03 | 3.1E-05      | 2.8E-05   | 2.0E-05     | 1.1E-05 |
| 63 | Monklands <sup>a</sup>                       | 1.5E-02      | 1.4E-02    | 8.9E-03     | 5.2E-03 | 1.4E-04      | 1.4E-04   | 1.4E-04     | 1.1E-04 |
| 64 | Moonstone<br>Homestead                       | 2.0E-03      | 3.0E-03    | 2.3E-03     | 9.3E-04 | 6.9E-06      | 6.5E-06   | 4.5E-06     | 2.5E-06 |
| 65 | Mossvale<br>Homestead                        | 6.4E-03      | 5.1E-03    | 1.3E-03     | 2.0E-03 | 8.7E-06      | 7.8E-06   | 5.2E-06     | 2.9E-06 |
| 67 | Oakleigh<br>Homestead                        | 5.9E-03      | 6.6E-03    | 2.9E-03     | 1.1E-03 | 2.1E-05      | 2.1E-05   | 1.5E-05     | 8.7E-06 |
| 68 | Quarry?                                      | 3.4E-03      | 3.4E-03    | 2.4E-03     | 1.1E-03 | 2.3E-05      | 2.0E-05   | 1.4E-05     | 7.4E-06 |
| 69 | Racecourse                                   | 3.3E-03      | 2.8E-03    | 2.0E-03     | 9.6E-04 | 2.1E-05      | 1.9E-05   | 1.3E-05     | 7.5E-06 |
| 70 | Racecourse                                   | 1.9E-03      | 1.8E-03    | 1.7E-03     | 2.0E-03 | 1.2E-05      | 1.0E-05   | 7.4E-06     | 4.4E-06 |

|       |                              |              | 1-hour bor | ron (µg/m³) | )       |              | Annual bo | ron (µg/m³) | )       |
|-------|------------------------------|--------------|------------|-------------|---------|--------------|-----------|-------------|---------|
| ID    | Name                         | Overloa<br>d | 100%       | 60%         | 25%     | Overloa<br>d | 100%      | 60%         | 25%     |
| 72    | Rosedale<br>Homestead        | 3.9E-03      | 2.1E-03    | 1.8E-03     | 1.4E-03 | 1.3E-05      | 1.1E-05   | 7.4E-06     | 4.7E-06 |
| 73    | Rosefield<br>Homestead       | 4.9E-03      | 5.3E-03    | 3.8E-03     | 2.7E-03 | 3.0E-05      | 2.7E-05   | 1.8E-05     | 1.0E-05 |
| 74    | Salt Bush<br>Homestead       | 4.4E-03      | 3.6E-03    | 3.5E-03     | 3.4E-03 | 2.4E-05      | 2.2E-05   | 1.6E-05     | 8.8E-06 |
| 75    | Speculation<br>Homestead     | 2.2E-03      | 4.0E-03    | 2.2E-03     | 1.7E-03 | 1.1E-05      | 1.1E-05   | 1.0E-05     | 6.4E-06 |
| 76    | Spring<br>Creek <sup>a</sup> | 3.9E-03      | 4.0E-03    | 3.9E-03     | 2.1E-03 | 3.9E-05      | 3.5E-05   | 2.6E-05     | 1.5E-05 |
| 79    | Surbiton<br>Homestead        | 1.6E-03      | 1.7E-03    | 1.9E-03     | 8.6E-04 | 7.4E-06      | 6.6E-06   | 4.6E-06     | 2.7E-06 |
| 80    | Surbiton<br>Station          | 2.9E-03      | 2.3E-03    | 1.5E-03     | 1.6E-03 | 5.6E-06      | 5.1E-06   | 3.8E-06     | 2.3E-06 |
| 81    | The Grove<br>Homestead       | 3.7E-03      | 3.4E-03    | 3.6E-03     | 8.0E-04 | 8.0E-06      | 7.2E-06   | 5.2E-06     | 2.6E-06 |
| 82    | Toarbee                      | 4.1E-03      | 5.6E-03    | 3.9E-03     | 3.1E-03 | 2.0E-05      | 1.9E-05   | 1.3E-05     | 7.8E-06 |
| 84    | Tressillian<br>Homestead     | 2.8E-03      | 2.5E-03    | 1.8E-03     | 1.1E-03 | 1.3E-05      | 1.2E-05   | 8.1E-06     | 4.3E-06 |
| 85    | Villafield<br>Homestead      | 6.1E-03      | 4.7E-03    | 1.9E-03     | 2.6E-03 | 1.5E-05      | 1.3E-05   | 9.0E-06     | 5.2E-06 |
| 86    | Wendouree<br>Homestead⁵      | 3.1E-03      | 2.8E-03    | 2.5E-03     | 3.6E-03 | 1.8E-05      | 1.6E-05   | 1.2E-05     | 7.9E-06 |
| 87    | Woodbrook<br>Homestead       | 9.8E-04      | 8.6E-04    | 4.0E-04     | 2.1E-04 | 2.6E-06      | 2.4E-06   | 1.6E-06     | 8.3E-07 |
| 88    | Wycheproof<br>Homestead      | 2.7E-03      | 3.2E-03    | 2.2E-03     | 4.7E-04 | 3.6E-06      | 3.4E-06   | 2.2E-06     | 1.0E-06 |
| 89    | Zeta<br>Homestead            | 1.9E-03      | 2.7E-03    | 2.1E-03     | 1.6E-03 | 5.3E-06      | 4.9E-06   | 4.0E-06     | 2.3E-06 |
| -     | Workers'<br>Camp             | 2.8E-02      | 2.7E-02    | 1.7E-02     | 1.2E-02 | 6.4E-05      | 6.4E-05   | 6.0E-05     | 3.7E-05 |
|       | Objective                    | 5E+01        | 5E+01      | 5E+01       | 5E+01   | 5E+00        | 5E+00     | 5E+00       | 5E+00   |
| Table | note:                        |              |            |             |         |              |           |             |         |

<sup>a</sup> These receptors will be acquired by Waratah

<sup>b</sup> These receptors will be acquired by Alpha Coal

## Table B11 1,400 MW – Predicted annual average ground-level concentrations of cadmium due to Project in isolation

|   | Nama                                                  | Annual cadmium (μg/m³) |         |         |         |  |  |  |
|---|-------------------------------------------------------|------------------------|---------|---------|---------|--|--|--|
|   | Name                                                  | Overload               | 100%    | 60%     | 25%     |  |  |  |
| 0 | Dwelling                                              | 7.8E-09                | 7.1E-09 | 5.0E-09 | 2.6E-09 |  |  |  |
| 1 | Dwelling                                              | 1.3E-08                | 1.1E-08 | 7.7E-09 | 4.4E-09 |  |  |  |
| 2 | Dwelling                                              | 3.4E-09                | 3.0E-09 | 2.1E-09 | 1.1E-09 |  |  |  |
| 5 | Accommodation Village - Alpha Coal Project            | 7.5E-09                | 6.8E-09 | 4.8E-09 | 2.9E-09 |  |  |  |
| 6 | Accommodation Village - South Galilee Coal<br>Project | 9.6E-09                | 9.1E-09 | 7.2E-09 | 4.5E-09 |  |  |  |
| 7 | Airfield                                              | 1.4E-08                | 1.3E-08 | 8.8E-09 | 4.7E-09 |  |  |  |

## Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

| ID | Neme                               | Annual cadmium (µg/m³) |         |         |         |  |  |  |
|----|------------------------------------|------------------------|---------|---------|---------|--|--|--|
| U  | Name                               | Overload               | 100%    | 60%     | 25%     |  |  |  |
| 8  | Alpha                              | 5.6E-09                | 4.9E-09 | 3.5E-09 | 2.2E-09 |  |  |  |
| 9  | Alpha Coal Bulk Sample             | 1.4E-08                | 1.4E-08 | 1.1E-08 | 8.1E-09 |  |  |  |
| 10 | Beaufort Homestead                 | 2.4E-09                | 2.1E-09 | 1.5E-09 | 8.5E-10 |  |  |  |
| 11 | Bedford Homestead                  | 5.9E-09                | 5.3E-09 | 3.8E-09 | 2.7E-09 |  |  |  |
| 12 | Betanga Homestead                  | 1.2E-08                | 1.1E-08 | 8.6E-09 | 6.4E-09 |  |  |  |
| 13 | Blairgowrie                        | 7.1E-09                | 6.3E-09 | 4.6E-09 | 3.0E-09 |  |  |  |
| 14 | Bonanza Homestead                  | 8.3E-09                | 7.4E-09 | 5.0E-09 | 2.9E-09 |  |  |  |
| 16 | Burgoyne Homestead                 | 9.7E-09                | 8.5E-09 | 6.4E-09 | 3.4E-09 |  |  |  |
| 17 | Burtle Homestead                   | 6.8E-09                | 6.1E-09 | 4.1E-09 | 2.3E-09 |  |  |  |
| 18 | Carinya Homestead                  | 2.5E-09                | 2.2E-09 | 1.7E-09 | 8.4E-10 |  |  |  |
| 19 | Cavendish Homestead <sup>a</sup>   | 2.5E-08                | 2.3E-08 | 1.8E-08 | 1.0E-08 |  |  |  |
| 20 | Colorado Homestead                 | 1.2E-08                | 1.0E-08 | 6.7E-09 | 4.0E-09 |  |  |  |
| 21 | Corn Top Homestead <sup>a</sup>    | 1.3E-08                | 1.2E-08 | 8.8E-09 | 7.0E-09 |  |  |  |
| 22 | Creek Farm Homestead               | 9.0E-09                | 8.2E-09 | 5.6E-09 | 3.0E-09 |  |  |  |
| 25 | Dwelling                           | 1.1E-08                | 1.0E-08 | 6.8E-09 | 4.1E-09 |  |  |  |
| 26 | Dwelling                           | 1.2E-08                | 1.1E-08 | 7.5E-09 | 4.4E-09 |  |  |  |
| 27 | Dwelling                           | 1.3E-08                | 1.2E-08 | 7.8E-09 | 4.5E-09 |  |  |  |
| 28 | Dwelling                           | 9.9E-09                | 9.0E-09 | 6.2E-09 | 3.4E-09 |  |  |  |
| 29 | Dwelling                           | 1.4E-08                | 1.2E-08 | 8.3E-09 | 4.6E-09 |  |  |  |
| 30 | Dwelling                           | 9.2E-09                | 8.4E-09 | 5.5E-09 | 3.3E-09 |  |  |  |
| 31 | Dwelling                           | 1.2E-08                | 1.1E-08 | 7.6E-09 | 4.0E-09 |  |  |  |
| 32 | Dwelling                           | 6.1E-09                | 5.4E-09 | 4.0E-09 | 2.5E-09 |  |  |  |
| 33 | Dwelling                           | 6.3E-09                | 5.6E-09 | 4.0E-09 | 2.3E-09 |  |  |  |
| 34 | Dwelling                           | 4.7E-09                | 4.1E-09 | 2.8E-09 | 1.6E-09 |  |  |  |
| 35 | Dwelling                           | 4.6E-09                | 4.0E-09 | 2.8E-09 | 1.6E-09 |  |  |  |
| 36 | Dwelling                           | 4.4E-09                | 4.0E-09 | 2.6E-09 | 1.4E-09 |  |  |  |
| 37 | Dwelling                           | 4.1E-09                | 3.7E-09 | 2.5E-09 | 1.5E-09 |  |  |  |
| 38 | Dwelling?                          | 4.2E-09                | 3.7E-09 | 2.6E-09 | 1.5E-09 |  |  |  |
| 39 | Edwinstowe Homestead               | 1.0E-08                | 9.3E-09 | 6.3E-09 | 3.6E-09 |  |  |  |
| 40 | Elphin Homestead                   | 4.4E-09                | 4.1E-09 | 2.9E-09 | 1.6E-09 |  |  |  |
| 41 | Eulimbie Homestead                 | 3.2E-09                | 2.9E-09 | 2.1E-09 | 1.3E-09 |  |  |  |
| 42 | Eureka Homestead                   | 1.8E-08                | 1.7E-08 | 1.1E-08 | 7.2E-09 |  |  |  |
| 44 | Gadwell Homestead                  | 5.6E-09                | 5.0E-09 | 3.5E-09 | 2.3E-09 |  |  |  |
| 46 | Glen Innes Homestead <sup>a</sup>  | 4.9E-08                | 4.5E-08 | 3.4E-08 | 1.9E-08 |  |  |  |
| 47 | Hazelbrook Homestead               | 4.9E-09                | 4.3E-09 | 3.0E-09 | 1.6E-09 |  |  |  |
| 49 | Hobartville Homestead <sup>b</sup> | 2.1E-08                | 2.0E-08 | 1.6E-08 | 1.0E-08 |  |  |  |
| 50 | Inverurie Homestead                | 1.6E-08                | 1.5E-08 | 1.0E-08 | 6.2E-09 |  |  |  |
| 51 | Islay Plains Homestead             | 2.2E-09                | 1.9E-09 | 1.4E-09 | 8.1E-10 |  |  |  |
| 52 | Jericho                            | 1.3E-08                | 1.1E-08 | 7.9E-09 | 4.4E-09 |  |  |  |
| 53 | Jordan Avon Homestead              | 1.7E-08                | 1.5E-08 | 1.1E-08 | 6.0E-09 |  |  |  |
| 54 | Kalbar Homestead                   | 2.7E-09                | 2.5E-09 | 1.7E-09 | 9.2E-10 |  |  |  |
| 55 | Kerand Homestead                   | 1.8E-09                | 1.7E-09 | 1.1E-09 | 6.2E-10 |  |  |  |
| 56 | Kia Ora Homestead <sup>a</sup>     | 3.8E-08                | 3.6E-08 | 2.8E-08 | 1.6E-08 |  |  |  |

| ID                                                                      | Nama                                   |          | Annual cadmium (µg/m³) |         |         |  |  |  |
|-------------------------------------------------------------------------|----------------------------------------|----------|------------------------|---------|---------|--|--|--|
| ID                                                                      | Name                                   | Overload | 100%                   | 60%     | 25%     |  |  |  |
| 57                                                                      | Lambton Meadows Homestead <sup>a</sup> | 2.0E-08  | 1.8E-08                | 1.4E-08 | 7.7E-09 |  |  |  |
| 59                                                                      | Locharnoch                             | 1.3E-08  | 1.2E-08                | 9.0E-09 | 4.4E-09 |  |  |  |
| 60                                                                      | Melton Homestead                       | 2.4E-09  | 2.1E-09                | 1.6E-09 | 9.7E-10 |  |  |  |
| 61                                                                      | Mentmore Homestead                     | 7.4E-09  | 6.7E-09                | 5.0E-09 | 3.1E-09 |  |  |  |
| 62                                                                      | Milangavla                             | 1.9E-08  | 1.7E-08                | 1.2E-08 | 6.6E-09 |  |  |  |
| 63                                                                      | Monklands <sup>a</sup>                 | 8.3E-08  | 8.4E-08                | 8.4E-08 | 6.6E-08 |  |  |  |
| 64                                                                      | Moonstone Homestead                    | 4.2E-09  | 3.9E-09                | 2.7E-09 | 1.5E-09 |  |  |  |
| 65                                                                      | Mossvale Homestead                     | 5.3E-09  | 4.7E-09                | 3.2E-09 | 1.8E-09 |  |  |  |
| 67                                                                      | Oakleigh Homestead                     | 1.3E-08  | 1.3E-08                | 9.3E-09 | 5.3E-09 |  |  |  |
| 68                                                                      | Quarry?                                | 1.4E-08  | 1.2E-08                | 8.5E-09 | 4.5E-09 |  |  |  |
| 69                                                                      | Racecourse                             | 1.3E-08  | 1.2E-08                | 8.2E-09 | 4.6E-09 |  |  |  |
| 70                                                                      | Racecourse                             | 7.1E-09  | 6.4E-09                | 4.5E-09 | 2.7E-09 |  |  |  |
| 72                                                                      | Rosedale Homestead                     | 7.9E-09  | 6.9E-09                | 4.5E-09 | 2.9E-09 |  |  |  |
| 73                                                                      | Rosefield Homestead                    | 1.8E-08  | 1.6E-08                | 1.1E-08 | 6.4E-09 |  |  |  |
| 74                                                                      | Salt Bush Homestead                    | 1.5E-08  | 1.3E-08                | 9.8E-09 | 5.4E-09 |  |  |  |
| 75                                                                      | Speculation Homestead                  | 6.8E-09  | 6.5E-09                | 6.1E-09 | 3.9E-09 |  |  |  |
| 76                                                                      | Spring Creek <sup>a</sup>              | 2.3E-08  | 2.1E-08                | 1.6E-08 | 8.9E-09 |  |  |  |
| 79                                                                      | Surbiton Homestead                     | 4.5E-09  | 4.0E-09                | 2.8E-09 | 1.6E-09 |  |  |  |
| 80                                                                      | Surbiton Station                       | 3.4E-09  | 3.1E-09                | 2.3E-09 | 1.4E-09 |  |  |  |
| 81                                                                      | The Grove Homestead                    | 4.9E-09  | 4.4E-09                | 3.2E-09 | 1.6E-09 |  |  |  |
| 82                                                                      | Toarbee                                | 1.2E-08  | 1.1E-08                | 7.6E-09 | 4.8E-09 |  |  |  |
| 84                                                                      | Tressillian Homestead                  | 7.8E-09  | 7.0E-09                | 4.9E-09 | 2.6E-09 |  |  |  |
| 85                                                                      | Villafield Homestead                   | 9.0E-09  | 7.9E-09                | 5.5E-09 | 3.2E-09 |  |  |  |
| 86                                                                      | Wendouree Homestead <sup>b</sup>       | 1.1E-08  | 1.0E-08                | 7.4E-09 | 4.8E-09 |  |  |  |
| 87                                                                      | Woodbrook Homestead                    | 1.6E-09  | 1.4E-09                | 9.6E-10 | 5.1E-10 |  |  |  |
| 88                                                                      | Wycheproof Homestead                   | 2.2E-09  | 2.1E-09                | 1.3E-09 | 6.3E-10 |  |  |  |
| 89                                                                      | Zeta Homestead                         | 3.2E-09  | 3.0E-09                | 2.4E-09 | 1.4E-09 |  |  |  |
| -                                                                       | Workers' Camp                          | 3.9E-08  | 3.9E-08                | 3.7E-08 | 2.3E-08 |  |  |  |
|                                                                         | Objective                              | 5E-03    | 5E-03                  | 5E-03   | 5E-03   |  |  |  |
| Table note:<br><sup>a</sup> These receptors will be acquired by Waratah |                                        |          |                        |         |         |  |  |  |

## 1,400 MW – Predicted annual average ground-level concentrations of lead due to Project in isolation Table B12

| ID | Namo                                       | Annual lead (µg/m <sup>3</sup> ) |         |         |         |  |  |  |
|----|--------------------------------------------|----------------------------------|---------|---------|---------|--|--|--|
|    | Name                                       | Overload                         | 100%    | 60%     | 25%     |  |  |  |
| 0  | Dwelling                                   | 2.4E-06                          | 2.2E-06 | 1.5E-06 | 7.9E-07 |  |  |  |
| 1  | Dwelling                                   | 3.8E-06                          | 3.4E-06 | 2.3E-06 | 1.3E-06 |  |  |  |
| 2  | Dwelling                                   | 1.0E-06                          | 9.1E-07 | 6.3E-07 | 3.4E-07 |  |  |  |
| 5  | Accommodation Village - Alpha Coal Project | 2.3E-06                          | 2.1E-06 | 1.4E-06 | 8.7E-07 |  |  |  |

## Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment - Final

|    | Nome                                                  | Annual lead (µg/m³) |         |         |         |  |  |
|----|-------------------------------------------------------|---------------------|---------|---------|---------|--|--|
| U  | Name                                                  | Overload            | 100%    | 60%     | 25%     |  |  |
| 6  | Accommodation Village - South Galilee Coal<br>Project | 2.9E-06             | 2.8E-06 | 2.2E-06 | 1.4E-06 |  |  |
| 7  | Airfield                                              | 4.3E-06             | 3.9E-06 | 2.7E-06 | 1.4E-06 |  |  |
| 8  | Alpha                                                 | 1.7E-06             | 1.5E-06 | 1.1E-06 | 6.7E-07 |  |  |
| 9  | Alpha Coal Bulk Sample                                | 4.4E-06             | 4.2E-06 | 3.3E-06 | 2.4E-06 |  |  |
| 10 | Beaufort Homestead                                    | 7.2E-07             | 6.5E-07 | 4.5E-07 | 2.6E-07 |  |  |
| 11 | Bedford Homestead                                     | 1.8E-06             | 1.6E-06 | 1.2E-06 | 8.2E-07 |  |  |
| 12 | Betanga Homestead                                     | 3.7E-06             | 3.4E-06 | 2.6E-06 | 1.9E-06 |  |  |
| 13 | Blairgowrie                                           | 2.2E-06             | 1.9E-06 | 1.4E-06 | 9.1E-07 |  |  |
| 14 | Bonanza Homestead                                     | 2.5E-06             | 2.2E-06 | 1.5E-06 | 8.8E-07 |  |  |
| 16 | Burgoyne Homestead                                    | 2.9E-06             | 2.6E-06 | 2.0E-06 | 1.0E-06 |  |  |
| 17 | Burtle Homestead                                      | 2.1E-06             | 1.9E-06 | 1.2E-06 | 6.8E-07 |  |  |
| 18 | Carinya Homestead                                     | 7.6E-07             | 6.8E-07 | 5.2E-07 | 2.5E-07 |  |  |
| 19 | Cavendish Homestead <sup>a</sup>                      | 7.7E-06             | 7.1E-06 | 5.4E-06 | 3.1E-06 |  |  |
| 20 | Colorado Homestead                                    | 3.6E-06             | 3.1E-06 | 2.0E-06 | 1.2E-06 |  |  |
| 21 | Corn Top Homestead <sup>a</sup>                       | 3.9E-06             | 3.5E-06 | 2.7E-06 | 2.1E-06 |  |  |
| 22 | Creek Farm Homestead                                  | 2.7E-06             | 2.5E-06 | 1.7E-06 | 9.2E-07 |  |  |
| 25 | Dwelling                                              | 3.5E-06             | 3.1E-06 | 2.1E-06 | 1.2E-06 |  |  |
| 26 | Dwelling                                              | 3.8E-06             | 3.4E-06 | 2.3E-06 | 1.3E-06 |  |  |
| 27 | Dwelling                                              | 3.9E-06             | 3.5E-06 | 2.4E-06 | 1.4E-06 |  |  |
| 28 | Dwelling                                              | 3.0E-06             | 2.7E-06 | 1.9E-06 | 1.0E-06 |  |  |
| 29 | Dwelling                                              | 4.1E-06             | 3.7E-06 | 2.5E-06 | 1.4E-06 |  |  |
| 30 | Dwelling                                              | 2.8E-06             | 2.6E-06 | 1.7E-06 | 9.9E-07 |  |  |
| 31 | Dwelling                                              | 3.7E-06             | 3.3E-06 | 2.3E-06 | 1.2E-06 |  |  |
| 32 | Dwelling                                              | 1.9E-06             | 1.6E-06 | 1.2E-06 | 7.4E-07 |  |  |
| 33 | Dwelling                                              | 1.9E-06             | 1.7E-06 | 1.2E-06 | 7.0E-07 |  |  |
| 34 | Dwelling                                              | 1.4E-06             | 1.3E-06 | 8.7E-07 | 4.9E-07 |  |  |
| 35 | Dwelling                                              | 1.4E-06             | 1.2E-06 | 8.5E-07 | 4.8E-07 |  |  |
| 36 | Dwelling                                              | 1.3E-06             | 1.2E-06 | 7.9E-07 | 4.3E-07 |  |  |
| 37 | Dwelling                                              | 1.2E-06             | 1.1E-06 | 7.8E-07 | 4.5E-07 |  |  |
| 38 | Dwelling?                                             | 1.3E-06             | 1.1E-06 | 8.0E-07 | 4.7E-07 |  |  |
| 39 | Edwinstowe Homestead                                  | 3.1E-06             | 2.8E-06 | 1.9E-06 | 1.1E-06 |  |  |
| 40 | Elphin Homestead                                      | 1.4E-06             | 1.3E-06 | 8.9E-07 | 4.9E-07 |  |  |
| 41 | Eulimbie Homestead                                    | 9.8E-07             | 8.7E-07 | 6.4E-07 | 4.0E-07 |  |  |
| 42 | Eureka Homestead                                      | 5.5E-06             | 5.2E-06 | 3.5E-06 | 2.2E-06 |  |  |
| 44 | Gadwell Homestead                                     | 1.7E-06             | 1.5E-06 | 1.1E-06 | 6.9E-07 |  |  |
| 46 | Glen Innes Homestead <sup>a</sup>                     | 1.5E-05             | 1.4E-05 | 1.0E-05 | 5.8E-06 |  |  |
| 47 | Hazelbrook Homestead                                  | 1.5E-06             | 1.3E-06 | 9.1E-07 | 5.0E-07 |  |  |
| 49 | Hobartville Homestead <sup>b</sup>                    | 6.3E-06             | 6.0E-06 | 4.9E-06 | 3.1E-06 |  |  |
| 50 | Inverurie Homestead                                   | 4.9E-06             | 4.6E-06 | 3.1E-06 | 1.9E-06 |  |  |
| 51 | Islay Plains Homestead                                | 6.6E-07             | 5.8E-07 | 4.2E-07 | 2.4E-07 |  |  |
| 52 | Jericho                                               | 3.9E-06             | 3.5E-06 | 2.4E-06 | 1.3E-06 |  |  |
| 53 | Jordan Avon Homestead                                 | 5.1E-06             | 4.6E-06 | 3.2E-06 | 1.8E-06 |  |  |

|    | Nama                                   | Annual lead (µg/m <sup>3</sup> ) |         |         |         |
|----|----------------------------------------|----------------------------------|---------|---------|---------|
|    | Name                                   | Overload                         | 100%    | 60%     | 25%     |
| 54 | Kalbar Homestead                       | 8.2E-07                          | 7.5E-07 | 5.2E-07 | 2.8E-07 |
| 55 | Kerand Homestead                       | 5.6E-07                          | 5.1E-07 | 3.5E-07 | 1.9E-07 |
| 56 | Kia Ora Homestead <sup>a</sup>         | 1.2E-05                          | 1.1E-05 | 8.5E-06 | 4.8E-06 |
| 57 | Lambton Meadows Homestead <sup>a</sup> | 5.9E-06                          | 5.5E-06 | 4.3E-06 | 2.3E-06 |
| 59 | Locharnoch                             | 4.1E-06                          | 3.8E-06 | 2.8E-06 | 1.3E-0  |
| 60 | Melton Homestead                       | 7.3E-07                          | 6.5E-07 | 4.7E-07 | 2.9E-0  |
| 61 | Mentmore Homestead                     | 2.2E-06                          | 2.0E-06 | 1.5E-06 | 9.2E-0  |
| 62 | Milangavla                             | 5.8E-06                          | 5.1E-06 | 3.8E-06 | 2.0E-0  |
| 63 | Monklands <sup>a</sup>                 | 2.5E-05                          | 2.6E-05 | 2.6E-05 | 2.0E-0  |
| 64 | Moonstone Homestead                    | 1.3E-06                          | 1.2E-06 | 8.4E-07 | 4.6E-0  |
| 65 | Mossvale Homestead                     | 1.6E-06                          | 1.4E-06 | 9.6E-07 | 5.4E-0  |
| 67 | Oakleigh Homestead                     | 3.9E-06                          | 3.8E-06 | 2.8E-06 | 1.6E-0  |
| 68 | Quarry?                                | 4.2E-06                          | 3.7E-06 | 2.6E-06 | 1.4E-0  |
| 69 | Racecourse                             | 4.0E-06                          | 3.6E-06 | 2.5E-06 | 1.4E-0  |
| 70 | Racecourse                             | 2.2E-06                          | 1.9E-06 | 1.4E-06 | 8.0E-0  |
| 72 | Rosedale Homestead                     | 2.4E-06                          | 2.1E-06 | 1.4E-06 | 8.7E-0  |
| 73 | Rosefield Homestead                    | 5.6E-06                          | 5.0E-06 | 3.4E-06 | 1.9E-0  |
| 74 | Salt Bush Homestead                    | 4.4E-06                          | 4.1E-06 | 3.0E-06 | 1.6E-0  |
| 75 | Speculation Homestead                  | 2.1E-06                          | 2.0E-06 | 1.9E-06 | 1.2E-0  |
| 76 | Spring Creek <sup>a</sup>              | 7.1E-06                          | 6.5E-06 | 4.7E-06 | 2.7E-0  |
| 79 | Surbiton Homestead                     | 1.4E-06                          | 1.2E-06 | 8.6E-07 | 4.9E-0  |
| 80 | Surbiton Station                       | 1.0E-06                          | 9.4E-07 | 7.1E-07 | 4.1E-0  |
| 81 | The Grove Homestead                    | 1.5E-06                          | 1.3E-06 | 9.7E-07 | 4.8E-0  |
| 82 | Toarbee                                | 3.6E-06                          | 3.5E-06 | 2.3E-06 | 1.4E-0  |
| 84 | Tressillian Homestead                  | 2.4E-06                          | 2.1E-06 | 1.5E-06 | 7.9E-0  |
| 85 | Villafield Homestead                   | 2.7E-06                          | 2.4E-06 | 1.7E-06 | 9.6E-0  |
| 86 | Wendouree Homestead <sup>b</sup>       | 3.3E-06                          | 3.0E-06 | 2.3E-06 | 1.5E-0  |
| 87 | Woodbrook Homestead                    | 4.8E-07                          | 4.4E-07 | 2.9E-07 | 1.5E-0  |
| 88 | Wycheproof Homestead                   | 6.7E-07                          | 6.3E-07 | 4.0E-07 | 1.9E-0  |
| 89 | Zeta Homestead                         | 9.8E-07                          | 9.1E-07 | 7.4E-07 | 4.3E-0  |
| -  | Workers' Camp                          | 1.2E-05                          | 1.2E-05 | 1.1E-05 | 6.9E-0  |
| I  | Objective                              | 5E-01                            | 5E-01   | 5E-01   | 5E-01   |

## 1,400 MW – Predicted 1-hour and annual average ground-level concentrations of mercury due to Project in isolation Table B13

|    |          | 1-hour mercury (µg/m³) |         |         |         |              | Annual mercury (μg/m³) |         |         |  |
|----|----------|------------------------|---------|---------|---------|--------------|------------------------|---------|---------|--|
| ID | Name     | Overloa<br>d           | 100%    | 60%     | 25%     | Overloa<br>d | 100%                   | 60%     | 25%     |  |
| 0  | Dwelling | 1.2E-06                | 9.9E-07 | 1.0E-06 | 4.2E-07 | 5.8E-09      | 5.3E-09                | 3.7E-09 | 1.9E-09 |  |

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

|    |                                                                 | 1            | -hour mer | cury (µg/m <sup>3</sup> | 3)      | Annual mercury (µg/m <sup>3</sup> ) |         |         | <sup>3</sup> ) |
|----|-----------------------------------------------------------------|--------------|-----------|-------------------------|---------|-------------------------------------|---------|---------|----------------|
| ID | Name                                                            | Overloa<br>d | 100%      | 60%                     | 25%     | Overloa<br>d                        | 100%    | 60%     | 25%            |
| 1  | Dwelling                                                        | 1.2E-06      | 1.2E-06   | 9.2E-07                 | 5.5E-07 | 9.4E-09                             | 8.5E-09 | 5.8E-09 | 3.3E-09        |
| 2  | Dwelling                                                        | 6.9E-07      | 6.2E-07   | 3.6E-07                 | 1.9E-07 | 2.6E-09                             | 2.2E-09 | 1.5E-09 | 8.4E-10        |
| 5  | Accommodat<br>ion Village -<br>Alpha Coal<br>Project            | 1.8E-06      | 1.7E-06   | 1.2E-06                 | 6.8E-07 | 5.6E-09                             | 5.1E-09 | 3.6E-09 | 2.1E-09        |
| 6  | Accommodat<br>ion Village -<br>South<br>Galilee Coal<br>Project | 1.4E-06      | 3.2E-06   | 4.0E-06                 | 1.0E-06 | 7.2E-09                             | 6.8E-09 | 5.4E-09 | 3.3E-09        |
| 7  | Airfield                                                        | 1.7E-06      | 1.5E-06   | 1.0E-06                 | 4.5E-07 | 1.1E-08                             | 9.5E-09 | 6.6E-09 | 3.4E-09        |
| 8  | Alpha                                                           | 1.1E-06      | 9.8E-07   | 7.1E-07                 | 9.0E-07 | 4.1E-09                             | 3.7E-09 | 2.6E-09 | 1.6E-09        |
| 9  | Alpha Coal<br>Bulk Sample                                       | 2.0E-06      | 2.2E-06   | 2.0E-06                 | 1.9E-06 | 1.1E-08                             | 1.0E-08 | 8.2E-09 | 6.0E-09        |
| 10 | Beaufort<br>Homestead                                           | 9.3E-07      | 7.0E-07   | 5.8E-07                 | 2.6E-07 | 1.8E-09                             | 1.6E-09 | 1.1E-09 | 6.3E-10        |
| 11 | Bedford<br>Homestead                                            | 8.8E-07      | 9.3E-07   | 7.1E-07                 | 1.9E-06 | 4.4E-09                             | 3.9E-09 | 2.9E-09 | 2.0E-09        |
| 12 | Betanga<br>Homestead                                            | 1.2E-06      | 9.9E-07   | 1.2E-06                 | 8.3E-07 | 9.1E-09                             | 8.3E-09 | 6.5E-09 | 4.7E-09        |
| 13 | Blairgowrie                                                     | 1.1E-06      | 1.1E-06   | 8.2E-07                 | 5.7E-07 | 5.3E-09                             | 4.7E-09 | 3.5E-09 | 2.2E-09        |
| 14 | Bonanza<br>Homestead                                            | 2.4E-06      | 1.7E-06   | 7.9E-07                 | 1.0E-06 | 6.2E-09                             | 5.5E-09 | 3.8E-09 | 2.2E-09        |
| 16 | Burgoyne<br>Homestead                                           | 9.4E-07      | 8.1E-07   | 1.0E-06                 | 2.9E-07 | 7.2E-09                             | 6.3E-09 | 4.8E-09 | 2.5E-09        |
| 17 | Burtle<br>Homestead                                             | 1.3E-06      | 1.2E-06   | 6.5E-07                 | 3.4E-07 | 5.1E-09                             | 4.6E-09 | 3.1E-09 | 1.7E-09        |
| 18 | Carinya<br>Homestead                                            | 1.2E-06      | 1.2E-06   | 1.2E-06                 | 3.0E-07 | 1.9E-09                             | 1.7E-09 | 1.3E-09 | 6.2E-10        |
| 19 | Cavendish<br>Homestead <sup>a</sup>                             | 1.5E-06      | 1.4E-06   | 1.7E-06                 | 6.8E-07 | 1.9E-08                             | 1.7E-08 | 1.3E-08 | 7.5E-09        |
| 20 | Colorado<br>Homestead                                           | 2.5E-06      | 1.7E-06   | 9.9E-07                 | 8.6E-07 | 8.8E-09                             | 7.7E-09 | 5.0E-09 | 2.9E-09        |
| 21 | Corn Top<br>Homestead <sup>a</sup>                              | 1.7E-06      | 1.2E-06   | 6.4E-07                 | 1.7E-06 | 9.6E-09                             | 8.7E-09 | 6.6E-09 | 5.1E-09        |
| 22 | Creek Farm<br>Homestead                                         | 1.6E-06      | 1.3E-06   | 8.0E-07                 | 3.7E-07 | 6.7E-09                             | 6.1E-09 | 4.2E-09 | 2.2E-09        |
| 25 | Dwelling                                                        | 1.2E-06      | 8.7E-07   | 7.3E-07                 | 4.0E-07 | 8.5E-09                             | 7.5E-09 | 5.1E-09 | 3.0E-09        |
| 26 | Dwelling                                                        | 1.0E-06      | 1.2E-06   | 8.2E-07                 | 7.3E-07 | 9.2E-09                             | 8.4E-09 | 5.6E-09 | 3.2E-09        |
| 27 | Dwelling                                                        | 1.2E-06      | 1.2E-06   | 9.2E-07                 | 5.8E-07 | 9.7E-09                             | 8.7E-09 | 5.9E-09 | 3.3E-09        |
| 28 | Dwelling                                                        | 1.1E-06      | 1.0E-06   | 9.3E-07                 | 3.6E-07 | 7.4E-09                             | 6.7E-09 | 4.7E-09 | 2.5E-09        |
| 29 | Dwelling                                                        | 1.5E-06      | 1.1E-06   | 7.1E-07                 | 7.7E-07 | 1.0E-08                             | 9.1E-09 | 6.2E-09 | 3.4E-09        |
| 30 | Dwelling                                                        | 9.7E-07      | 1.3E-06   | 1.6E-06                 | 6.3E-07 | 6.8E-09                             | 6.3E-09 | 4.1E-09 | 2.4E-09        |
| 31 | Dwelling                                                        | 1.3E-06      | 1.0E-06   | 9.6E-07                 | 4.6E-07 | 9.0E-09                             | 8.1E-09 | 5.7E-09 | 3.0E-09        |
| 32 | Dwelling                                                        | 9.0E-07      | 9.2E-07   | 1.2E-06                 | 9.9E-07 | 4.6E-09                             | 4.1E-09 | 3.0E-09 | 1.8E-09        |
| 33 | Dwelling                                                        | 9.0E-07      | 9.0E-07   | 1.2E-06                 | 6.7E-07 | 4.7E-09                             | 4.2E-09 | 3.0E-09 | 1.7E-09        |
| 34 | Dwelling                                                        | 1.3E-06      | 1.1E-06   | 5.6E-07                 | 7.7E-07 | 3.5E-09                             | 3.1E-09 | 2.1E-09 | 1.2E-09        |

|    |                                              | 1            | -hour mer | cury (µg/m <sup>:</sup> | <sup>3</sup> ) | Annual mercury (µg/m <sup>3</sup> ) |         |         |         |
|----|----------------------------------------------|--------------|-----------|-------------------------|----------------|-------------------------------------|---------|---------|---------|
| ID | Name                                         | Overloa<br>d | 100%      | 60%                     | 25%            | Overloa<br>d                        | 100%    | 60%     | 25%     |
| 35 | Dwelling                                     | 1.4E-06      | 9.5E-07   | 6.4E-07                 | 8.3E-07        | 3.4E-09                             | 3.0E-09 | 2.1E-09 | 1.2E-09 |
| 36 | Dwelling                                     | 1.7E-06      | 2.2E-06   | 5.5E-07                 | 4.6E-07        | 3.3E-09                             | 3.0E-09 | 2.0E-09 | 1.1E-09 |
| 37 | Dwelling                                     | 1.0E-06      | 1.1E-06   | 1.0E-06                 | 1.0E-06        | 3.1E-09                             | 2.7E-09 | 1.9E-09 | 1.1E-09 |
| 38 | Dwelling?                                    | 1.0E-06      | 1.0E-06   | 8.6E-07                 | 7.0E-07        | 3.1E-09                             | 2.8E-09 | 2.0E-09 | 1.1E-09 |
| 39 | Edwinstowe<br>Homestead                      | 2.0E-06      | 1.5E-06   | 8.3E-07                 | 5.7E-07        | 7.7E-09                             | 7.0E-09 | 4.8E-09 | 2.6E-09 |
| 40 | Elphin<br>Homestead                          | 1.2E-06      | 2.3E-06   | 9.4E-07                 | 6.9E-07        | 3.3E-09                             | 3.1E-09 | 2.2E-09 | 1.2E-09 |
| 41 | Eulimbie<br>Homestead                        | 1.4E-06      | 1.1E-06   | 8.1E-07                 | 4.2E-07        | 2.4E-09                             | 2.1E-09 | 1.6E-09 | 9.7E-10 |
| 42 | Eureka<br>Homestead                          | 4.9E-06      | 3.7E-06   | 3.3E-06                 | 1.0E-06        | 1.4E-08                             | 1.3E-08 | 8.6E-09 | 5.3E-09 |
| 44 | Gadwell<br>Homestead                         | 2.2E-06      | 1.9E-06   | 6.3E-07                 | 1.2E-06        | 4.2E-09                             | 3.8E-09 | 2.6E-09 | 1.7E-09 |
| 46 | Glen Innes<br>Homestead <sup>a</sup>         | 3.1E-06      | 2.9E-06   | 2.1E-06                 | 1.2E-06        | 3.6E-08                             | 3.3E-08 | 2.5E-08 | 1.4E-08 |
| 47 | Hazelbrook<br>Homestead                      | 1.4E-06      | 1.0E-06   | 5.3E-07                 | 5.9E-07        | 3.7E-09                             | 3.2E-09 | 2.3E-09 | 1.2E-09 |
| 49 | Hobartville<br>Homestead <sup>b</sup>        | 1.9E-06      | 2.0E-06   | 2.4E-06                 | 1.4E-06        | 1.5E-08                             | 1.5E-08 | 1.2E-08 | 7.5E-09 |
| 50 | Inverurie<br>Homestead                       | 1.7E-06      | 2.6E-06   | 9.9E-07                 | 1.0E-06        | 1.2E-08                             | 1.1E-08 | 7.7E-09 | 4.6E-09 |
| 51 | Islay Plains<br>Homestead                    | 3.7E-07      | 3.6E-07   | 2.7E-07                 | 3.3E-07        | 1.6E-09                             | 1.4E-09 | 1.0E-09 | 5.9E-10 |
| 52 | Jericho                                      | 1.4E-06      | 1.1E-06   | 9.6E-07                 | 4.4E-07        | 9.5E-09                             | 8.5E-09 | 5.9E-09 | 3.3E-09 |
| 53 | Jordan Avon<br>Homestead                     | 2.0E-06      | 1.8E-06   | 1.2E-06                 | 7.6E-07        | 1.3E-08                             | 1.1E-08 | 8.0E-09 | 4.4E-09 |
| 54 | Kalbar<br>Homestead                          | 5.9E-07      | 5.0E-07   | 3.0E-07                 | 1.7E-07        | 2.0E-09                             | 1.9E-09 | 1.3E-09 | 6.8E-10 |
| 55 | Kerand<br>Homestead                          | 5.4E-07      | 4.6E-07   | 2.8E-07                 | 1.3E-07        | 1.4E-09                             | 1.3E-09 | 8.6E-10 | 4.5E-10 |
| 56 | Kia Ora<br>Homestead <sup>a</sup>            | 3.1E-06      | 2.5E-06   | 1.8E-06                 | 1.7E-06        | 2.9E-08                             | 2.7E-08 | 2.1E-08 | 1.2E-08 |
| 57 | Lambton<br>Meadows<br>Homestead <sup>a</sup> | 3.6E-06      | 2.6E-06   | 1.8E-06                 | 1.0E-06        | 1.5E-08                             | 1.4E-08 | 1.1E-08 | 5.7E-09 |
| 59 | Locharnoch                                   | 2.2E-06      | 2.0E-06   | 1.2E-06                 | 5.1E-07        | 1.0E-08                             | 9.2E-09 | 6.8E-09 | 3.2E-09 |
| 60 | Melton<br>Homestead                          | 9.7E-07      | 6.6E-07   | 4.0E-07                 | 3.1E-07        | 1.8E-09                             | 1.6E-09 | 1.2E-09 | 7.1E-10 |
| 61 | Mentmore<br>Homestead                        | 2.2E-06      | 2.0E-06   | 1.4E-06                 | 9.7E-07        | 5.5E-09                             | 5.0E-09 | 3.8E-09 | 2.3E-09 |
| 62 | Milangavla                                   | 1.5E-06      | 1.6E-06   | 2.9E-06                 | 7.6E-07        | 1.4E-08                             | 1.3E-08 | 9.3E-09 | 4.8E-09 |
| 63 | Monklands <sup>a</sup>                       | 7.0E-06      | 6.2E-06   | 4.1E-06                 | 2.3E-06        | 6.2E-08                             | 6.3E-08 | 6.3E-08 | 4.9E-08 |
| 64 | Moonstone<br>Homestead                       | 9.0E-07      | 1.4E-06   | 1.0E-06                 | 4.2E-07        | 3.1E-09                             | 2.9E-09 | 2.1E-09 | 1.1E-09 |
| 65 | Mossvale<br>Homestead                        | 2.9E-06      | 2.3E-06   | 6.0E-07                 | 8.9E-07        | 4.0E-09                             | 3.5E-09 | 2.4E-09 | 1.3E-09 |
| 67 | Oakleigh<br>Homestead                        | 2.7E-06      | 3.0E-06   | 1.3E-06                 | 4.7E-07        | 9.6E-09                             | 9.4E-09 | 7.0E-09 | 3.9E-09 |

|       |                                     | 1            | -hour mer | cury (µg/m | <sup>3</sup> ) | Annual mercury (µg/m <sup>3</sup> ) |         |         | <sup>3</sup> ) |
|-------|-------------------------------------|--------------|-----------|------------|----------------|-------------------------------------|---------|---------|----------------|
| ID    | Name                                | Overloa<br>d | 100%      | 60%        | 25%            | Overloa<br>d                        | 100%    | 60%     | 25%            |
| 68    | Quarry?                             | 1.5E-06      | 1.5E-06   | 1.1E-06    | 4.9E-07        | 1.0E-08                             | 9.2E-09 | 6.4E-09 | 3.3E-09        |
| 69    | Racecourse                          | 1.5E-06      | 1.3E-06   | 9.3E-07    | 4.3E-07        | 9.8E-09                             | 8.8E-09 | 6.1E-09 | 3.4E-09        |
| 70    | Racecourse                          | 8.5E-07      | 8.1E-07   | 7.9E-07    | 9.2E-07        | 5.3E-09                             | 4.7E-09 | 3.4E-09 | 2.0E-09        |
| 72    | Rosedale<br>Homestead               | 1.8E-06      | 9.5E-07   | 8.4E-07    | 6.4E-07        | 5.9E-09                             | 5.1E-09 | 3.4E-09 | 2.1E-09        |
| 73    | Rosefield<br>Homestead              | 2.2E-06      | 2.4E-06   | 1.7E-06    | 1.2E-06        | 1.4E-08                             | 1.2E-08 | 8.3E-09 | 4.7E-09        |
| 74    | Salt Bush<br>Homestead              | 2.0E-06      | 1.6E-06   | 1.6E-06    | 1.5E-06        | 1.1E-08                             | 1.0E-08 | 7.3E-09 | 4.0E-09        |
| 75    | Speculation<br>Homestead            | 9.9E-07      | 1.8E-06   | 1.0E-06    | 7.8E-07        | 5.1E-09                             | 4.9E-09 | 4.6E-09 | 2.9E-09        |
| 76    | Spring<br>Creek <sup>a</sup>        | 1.8E-06      | 1.8E-06   | 1.8E-06    | 9.6E-07        | 1.8E-08                             | 1.6E-08 | 1.2E-08 | 6.5E-09        |
| 79    | Surbiton<br>Homestead               | 7.1E-07      | 7.7E-07   | 8.6E-07    | 3.9E-07        | 3.4E-09                             | 3.0E-09 | 2.1E-09 | 1.2E-09        |
| 80    | Surbiton<br>Station                 | 1.3E-06      | 1.1E-06   | 6.9E-07    | 7.2E-07        | 2.5E-09                             | 2.3E-09 | 1.7E-09 | 1.0E-09        |
| 81    | The Grove<br>Homestead              | 1.7E-06      | 1.5E-06   | 1.6E-06    | 3.6E-07        | 3.6E-09                             | 3.3E-09 | 2.4E-09 | 1.2E-09        |
| 82    | Toarbee                             | 1.9E-06      | 2.6E-06   | 1.8E-06    | 1.4E-06        | 8.9E-09                             | 8.5E-09 | 5.7E-09 | 3.5E-09        |
| 84    | Tressillian<br>Homestead            | 1.3E-06      | 1.2E-06   | 8.1E-07    | 5.1E-07        | 5.8E-09                             | 5.3E-09 | 3.7E-09 | 1.9E-09        |
| 85    | Villafield<br>Homestead             | 2.8E-06      | 2.2E-06   | 8.7E-07    | 1.2E-06        | 6.7E-09                             | 5.9E-09 | 4.1E-09 | 2.3E-09        |
| 86    | Wendouree<br>Homestead <sup>b</sup> | 1.4E-06      | 1.3E-06   | 1.1E-06    | 1.6E-06        | 8.1E-09                             | 7.5E-09 | 5.6E-09 | 3.6E-09        |
| 87    | Woodbrook<br>Homestead              | 4.4E-07      | 3.9E-07   | 1.8E-07    | 9.5E-08        | 1.2E-09                             | 1.1E-09 | 7.3E-10 | 3.7E-10        |
| 88    | Wycheproof<br>Homestead             | 1.2E-06      | 1.4E-06   | 9.9E-07    | 2.1E-07        | 1.7E-09                             | 1.6E-09 | 9.9E-10 | 4.6E-10        |
| 89    | Zeta<br>Homestead                   | 8.7E-07      | 1.2E-06   | 9.7E-07    | 7.4E-07        | 2.4E-09                             | 2.2E-09 | 1.8E-09 | 1.1E-09        |
| -     | Workers'<br>Camp                    | 1.3E-05      | 1.2E-05   | 7.9E-06    | 5.2E-06        | 2.9E-08                             | 2.9E-08 | 2.8E-08 | 1.7E-08        |
|       | Objective                           | 1.8E-01      | 1.8E-01   | 1.8E-01    | 1.8E-01        | 1.1E+00                             | 1.1E+00 | 1.1E+00 | 1.1E+00        |
| Table | note:                               |              |           |            |                |                                     |         |         |                |

<sup>a</sup> These receptors will be acquired by Waratah

<sup>b</sup> These receptors will be acquired by Alpha Coal

Katestone Environmental Pty Ltd D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

## APPENDIX C CUMULATIVE ASSESSMENT

|    |                           | Galil        | ee Coal Pr  | oject            | Galilee (<br>Coal Pi<br>Co | Coal Projec<br>oject and<br>orner Proje | ct, Alpha<br>Kevin's<br>ect |
|----|---------------------------|--------------|-------------|------------------|----------------------------|-----------------------------------------|-----------------------------|
| ID | Name                      | <b>PM</b> 10 | PN          | A <sub>2.5</sub> | <b>PM</b> 10               | PN                                      | A <sub>2.5</sub>            |
|    |                           | 24-hr        | 24-<br>hour | Annual           | 24-hr                      | 24-<br>hour                             | Annual                      |
| 8  | Alpha                     | 3            | 1           | 0                | 4                          | 2                                       | 0                           |
| 11 | Bedford Homestead         | 4            | 2           | 0                | 5                          | 3                                       | 0                           |
| 12 | Betanga Homestead         | 23           | 10          | 1                | 27                         | 11                                      | 1                           |
| 16 | Burgoyne Homestead        | 9            | 3           | 0                | 10                         | 3                                       | 0                           |
| 17 | Burtle Homestead          | 6            | 3           | 0                | 7                          | 3                                       | 0                           |
| 19 | Cavendish Homestead       | 37           | 16          | 4                | 38                         | 18                                      | 5                           |
| 20 | Colorado Homestead        | 15           | 6           | 1                | 19                         | 7                                       | 1                           |
| 21 | Corn Top Homestead        | 25           | 10          | 1                | 29                         | 12                                      | 1                           |
| 22 | Creek Farm Homestead      | 4            | 2           | 0                | 5                          | 2                                       | 0                           |
| 41 | Eulimbie Homestead        | 5            | 2           | 0                | 7                          | 2                                       | 0                           |
| 42 | Eureka Homestead          | 20           | 10          | 1                | 23                         | 12                                      | 1                           |
| 44 | Gadwell Homestead         | 7            | 3           | 0                | 7                          | 3                                       | 0                           |
| 46 | Glen Innes Homestead      | 431          | 118         | 26               | 466                        | 118                                     | 27                          |
| 49 | Hobartville Homestead     | 41           | 14          | 1                | 43                         | 15                                      | 1                           |
| 50 | Inverurie Homestead       | 9            | 4           | 1                | 10                         | 4                                       | 1                           |
| 52 | Jericho                   | 10           | 4           | 0                | 11                         | 4                                       | 1                           |
| 53 | Jordan Avon Homestead     | 9            | 4           | 1                | 9                          | 4                                       | 1                           |
| 56 | Kia Ora Homestead         | 804          | 209         | 36               | 808                        | 213                                     | 37                          |
| 57 | Lambton Meadows Homestead | 45           | 20          | 3                | 47                         | 21                                      | 3                           |
| 59 | Locharnoch                | 12           | 4           | 1                | 12                         | 4                                       | 1                           |
| 61 | Mentmore Homestead        | 11           | 4           | 0                | 11                         | 4                                       | 0                           |
| 62 | Milangavla                | 20           | 9           | 2                | 22                         | 9                                       | 2                           |
| 63 | Monklands                 | 180          | 52          | 6                | 195                        | 55                                      | 7                           |
| 65 | Mossvale Homestead        | 2            | 1           | 0                | 4                          | 2                                       | 0                           |
| 67 | Oakleigh Homestead        | 12           | 6           | 0                | 15                         | 8                                       | 0                           |
| 73 | Rosefield Homestead       | 20           | 8           | 1                | 21                         | 9                                       | 2                           |
| 74 | Salt Bush Homestead       | 11           | 5           | 0                | 16                         | 7                                       | 0                           |
| 76 | Spring Creek              | 59           | 22          | 5                | 61                         | 22                                      | 6                           |
| 79 | Surbiton Homestead        | 10           | 4           | 0                | 12                         | 5                                       | 0                           |
| 81 | The Grove Homestead       | 2            | 1           | 0                | 4                          | 2                                       | 0                           |
| 82 | Toarbee                   | 15           | 6           | 1                | 19                         | 7                                       | 1                           |
| 84 | Tressillian Homestead     | 15           | 6           | 0                | 16                         | 6                                       | 0                           |
| 86 | Wendouree Homestead       | 17           | 6           | 1                | 32                         | 9                                       | 2                           |

## Table C1Predicted ground-level concentrations of PM10 and PM2.5 at sensitive receptors<br/>(adapted from Table 2.13 Pacific Environment Limited, July 2013)

### Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final

# Table C2Predicted ground-level concentrations of PM10 and PM2.5 at sensitive receptors<br/>(adapted from Table 12 and Figures 12 to 15, Noise Mapping Australia, February<br/>2012)

|    |                           | South        | South Galilee Coal Project |                   |  |  |  |
|----|---------------------------|--------------|----------------------------|-------------------|--|--|--|
| ID | Name                      | <b>PM</b> 10 | PN                         | PM <sub>2.5</sub> |  |  |  |
|    |                           | 24-hr        | 24-hour                    | Annual            |  |  |  |
| 8  | Alpha                     | 15           | 2                          | 0.5               |  |  |  |
| 11 | Bedford Homestead         | 15           | 2                          | 0.5               |  |  |  |
| 12 | Betanga Homestead         | 15           | 2                          | 0.5               |  |  |  |
| 19 | Cavendish Homestead       | 10           | 2                          | 0.5               |  |  |  |
| 20 | Colorado Homestead        | 10           | 2                          | 0.5               |  |  |  |
| 22 | Creek Farm Homestead      | 25           | 3                          | 0.5               |  |  |  |
| 42 | Eureka Homestead          | 30           | 4                          | 0.5               |  |  |  |
| 44 | Gadwell Homestead         | 15           | 2                          | 0.5               |  |  |  |
| 57 | Lambton Meadows Homestead | 15           | 2                          | 0.5               |  |  |  |
| 61 | Mentmore Homestead        | 15           | 2                          | 0.5               |  |  |  |
| 65 | Mossvale Homestead        | 15           | 2                          | 0.5               |  |  |  |
| 67 | Oakleigh Homestead        | 32           | 4                          | 0.5               |  |  |  |
| 74 | Salt Bush Homestead       | 18           | 2                          | 0.5               |  |  |  |
| 81 | The Grove Homestead       | 15           | 4                          | 0.5               |  |  |  |
| 84 | Tressillian Homestead     | 10           | 2                          | 0.5               |  |  |  |

Katestone Environmental Pty Ltd

D18047-5 Waratah Coal Pty Ltd – Galilee Power Project – Monklands: Air Quality and Greenhouse Gas Assessment – Final