

Service Provider ID 473

DRINKING WATER QUALITY MANAGEMENT PLAN

May 2018

Document Control

	Prepared by:			Approved by:		
Rev	Name	Review / Release	Comment	Signature/Name	Date	
1	P.J. Cullivan	Review	Issued to Council for Council Approval		20/03/2012	
2	P.J. Cullivan	Review	Issued To Regulator	Mike Donald	21/03/2012	
3	Alvin Feeney	Review	Internal Review		03/08/2012	
4	Alvin Feeney	Review	Issued to Regulator	Mike Donald	22/08/2012	
5	Alvin Feeney	Release	Approved	Mike Donald	07/11/2012	
6	William Green	Review	Amendment of document. Report released to Council followed by Regulator for comment.		24/05/2018	

GBA File/Doc no. 170199 / 284792

Contact for enquiries and proposed changes

If you have any questions regarding this document or if you have a suggestion for improvements, please contact:

Project Manager	William Green
Phone	07 4651 5177

Table of Contents

Table of Contentsi							
List o	List of Figuresii						
List o	of Tab	les		v			
1	Regis	stered	Service Details	1			
	1.1		/al Application Form				
	1.2	••	r Information Required				
2			frastructure for Providing the Service				
	2.1		Water Supply Scheme				
	2.1	2.1.1	Schematic				
		2.1.1	Source, Treatment and Distribution Details				
	2.2		c Water Supply Scheme				
	2.2	2.2.1	Schematic				
		2.2.1	Source, Treatment and Distribution Details				
	2.3		dine Water Supply Scheme				
	2.0	2.3.1	Schematic				
		2.3.2	Source, Treatment and Distribution Details				
	2.4	-	Water Supply Scheme				
	2.1	2.4.1	Schematic				
		2.4.2	Source, Treatment And Distribution Details				
	2.5		ourra Water Supply Scheme				
		2.5.1	Schematic				
		2.5.2	Source, Treatment And Distribution Details				
	2.6	Kev St	akeholders				
3	Ident		ards and Hazardous Events				
	3.1	Alpha V	Water Quality and Catchment Characteristics	26			
		3.1.1	Water Quality Information	26			
			Catchment Characteristics				
			Hazard Identification				
	3.2	Arama	c Water Quality and Catchment Characteristics				
		3.2.1	Water Quality Information				
		3.2.2	Catchment Characteristics				
			Hazard Identification				
	3.3		dine Water Quality and Catchment Characteristics				
		3.3.1	Water quality information				
		3.3.2 3.3.3	Catchment Characteristics				
	24						
	3.4		Water Quality and Catchment Characteristics				
		3.4.1 3.4.2	Water Quality Information				
		-	Hazard Identification				
	3.5		purra Water Quality and Catchment Characteristics1				
	0.0	3.5.1	Water Quality Information				
		3.5.2	Catchment Characteristics				
		3.5.3	Hazard Identification				
4	Asse	ssmen	t of Risks1				
	4.1		dology				
		4.1.1	Site Visits, Interviews and Risk Assessment Workshop1				

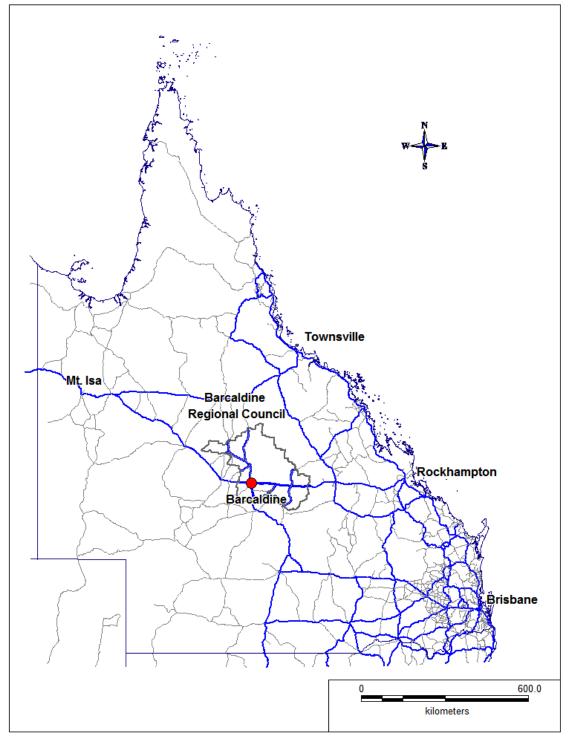
	4.2	Asses	sment of Risk	146
		4.2.1	Assessment of Maximum Risk	147
		4.2.2	Existing preventative measures/barriers	147
		4.2.3	Residual risk	147
	4.3	Key S	takeholders	147
5	Man	aging F	Risks	149
	5.1	Risk N	lanagement Measures	149
		5.1.1	Alpha and Jericho Existing and Proposed Preventative Measures	149
		5.1.2	Aramac, Barcaldine and Muttaburra Proposed Preventative Measures	154
	5.2	Opera	tion and Maintenance Procedures	156
	5.3	Manag	gement of Incidents and Emergencies	157
	5.4		Anagement Improvement Program	
		5.4.1	Alpha and Jericho RMIP	163
		5.4.2	Aramac, Barcaldine and Muttaburra RMIP	166
	5.5	Inform	nation Management	168
6	Оре	rationa	I and Verification Monitoring Programs	171
	6.1		tional Monitoring	
		6.1.1	Alpha and Jericho Operational Monitoring	
		6.1.2	Aramac, Barcaldine and Muttaburra Operation Monitoring	
	6.2	Verific	ation Monitoring	175
		6.2.1	Alpha and Jericho Verification monitoring	
		6.2.2	Aramac, Barcaldine and Muttaburra Verification Monitoring	
Арр	endix	A Drir	nking Water Quality Management Plan Approval Application	179
App	endix	B Wat	er Supply Layouts Superimposed on Aerial Photos	182
			e Water Report Cards	
•••			a Casing and Stratification Dataila	

Appendix D	Bore Casing and Stratification Details	248
Appendix E	Local Disaster Management Plan Contact Details	257
Appendix F	Existing Mining Leases and Exploration Areas	261

List of Figures

Figure 1.1 Percelding Logation Man	1
Figure 1.1 Barcaldine Location Map	I
Figure 1.2 Barcaldine Regional Council	
Figure 2.1 Alpha Service Schematic Layout	
Figure 2.2 Alpha Treatment Plant Schematic	7
Figure 2.3 Aramac Service Schematic Layout	. 11
Figure 2.4 Barcaldine Service Schematic Layout	. 14
Figure 2.5 Jericho Service Schematic Layout	. 18
Figure 2.6 Jericho Treatment Plant Schematic	. 19
Figure 2.7 Muttaburra Service Schematic Layout	. 22
Figure 3.1 Alpha Treated - pH at 23°C	. 30
Figure 3.2 Alpha Treated - Total Hardness	. 30
Figure 3.3 Alpha Treated – Silica	. 31
Figure 3.4 Alpha Treated - Total Dissolved Solids	. 31
Figure 3.5 Alpha Treated - True Colour	. 32
Figure 3.6 Alpha Treated – Turbidity	. 32
Figure 3.7 Alpha Treated - Sodium	. 33
Figure 3.8 Alpha Treated – Chloride	. 33
Figure 3.9 Alpha Treated – Fluoride	
Figure 3.10 Alpha Treated – Nitrate	

	Alpha Treated - Sulphate	
Q	Alpha Treated – Iron	
	Alpha Treated - Manganese	
	Alpha Treated – Zinc	
	Alpha Treated – Aluminium	
	Alpha Treated – Boron	
	Alpha Treated – Copper	
	Alpha Treated – Chlorate	
	Alpha Source - pH at 23°C	
Figure 3.20	Alpha Source - Total Hardness	42
	Alpha Source - Silica	
Figure 3.22	Alpha Source - Total Dissolved Solids	43
Figure 3.23	Alpha Source - True Colour	44
	Alpha Source – Turbidity	
Figure 3.25	Alpha Source - Sodium	45
Figure 3.26	Alpha Source – Chloride	45
	Alpha Source - Fluoride	
	Alpha Source – Nitrate	
	Alpha Source - Sulphate	
Figure 3.30	Alpha Source - Iron	47
Figure 3.31	Alpha Source - Manganese	48
	Alpha Source – Zinc	
	Alpha Source – Aluminium	
	Alpha Source – Boron	
	Alpha Source – Copper	
	Aramac - pH at 23°C	
	Aramac - Total Hardness	
	Aramac – Silica	
Q	Aramac - Total Dissolved Solids	
Q	Aramac - True Colour	
	Aramac – Turbidity	
	Aramac – Sodium	
	Aramac – Chloride	
	Aramac - Fluoride	
	Aramac - Nitrate	
	Aramac - Sulphate	
	Aramac – Iron	
	Aramac - Manganese	
	Aramac - Zinc	
	Aramac - Aluminium	
	Aramac – Boron	
	Aramac – Copper	
Figure 3.53	Aramac - E. Coli	71
Figure 3.54	GAB Recharge, Discharge and Flow	74
Figure 3.55	Barcaldine- pH at 23°C	81
	Barcaldine- Total Hardness	
0	Barcaldine- Silica	
Q	Barcaldine- Total Dissolved Solids	
0	Barcaldine- True Colour	
0	Barcaldine- Turbidity	
0	Barcaldine- Sodium	
0	Barcaldine- Chloride	
Q	Barcaldine- Fluoride	
	Barcaldine- Nitrate	
	Barcaldine- Sulphate	
	Barcaldine- Iron	
rigule 3.67	Barcaldine- Manganese	0/


Figure 3.68 Barcaldine- Zinc	
Figure 3.69 Barcaldine- Aluminium	
Figure 3.70 Barcaldine- Boron	
Figure 3.71 Barcaldine- Copper	. 89
Figure 3.72 Barcaldine- E Coli	. 89
Figure 3.73 Jericho Treated - pH at 23°C	. 98
Figure 3.74 Jericho Treated - Total Hardness	98
Figure 3.75 Jericho Treated – Silica	99
Figure 3.76 Jericho Treated - Total Dissolved Solids	99
Figure 3.77 Jericho Treated - True Colour	100
Figure 3.78 Jericho Treated – Turbidity	100
Figure 3.79 Jericho Treated - Sodium	101
Figure 3.80 Jericho Treated – Chloride	
Figure 3.81 Jericho Treated – Fluoride	
Figure 3.82 Jericho Treated - Nitrate	
Figure 3.83 Jericho Treated - Sulphate	103
Figure 3.84 Jericho Treated – Iron	103
Figure 3.85 Jericho Treated – Manganese	104
Figure 3.86 Jericho Treated – Zinc	
Figure 3.87 Jericho Treated - Aluminium	105
Figure 3.88 Jericho Treated – Boron	
Figure 3.89 Jericho Treated - Copper	
Figure 3.90 Jericho Source - pH at 23°C	
Figure 3.91 Jericho Source - Total Hardness	
Figure 3.92 Jericho Source – Silica	
Figure 3.93 Jericho Source - Total Dissolved Solids	111
Figure 3.94 Jericho Source - True Colour	
Figure 3.95 Jericho Source – Turbidity	
Figure 3.96 Jericho Source - Sodium	
Figure 3.97 Jericho Source – Chloride	
Figure 3.98 Jericho Source - Fluoride	
Figure 3.99 Jericho Source – Nitrate	
Figure 3.100 Jericho Source – Sulphate	115
Figure 3.101 Jericho Source – Iron	
Figure 3.102 Jericho Source – Manganese	
Figure 3.103 Jericho Source - Zinc	
Figure 3.104 Jericho Source - Aluminium	
Figure 3.105 Jericho Source - Boron	
Figure 3.106 Jericho Source - Copper	
Figure 3.107 Muttaburra - pH at 23°C	
Figure 3.108 Muttaburra - Total Hardness	
Figure 3.109 Muttaburra - Silica	
Figure 3.110 Muttaburra - Total Dissolved Solids	
Figure 3.111 Muttaburra - True Colour	
Figure 3.112 Muttaburra - Turbidity	
Figure 3.113 Muttaburra - Sodium	
Figure 3.114 Muttaburra - Chloride	
Figure 3.115 Muttaburra - Fluoride	
Figure 3.116 Muttaburra - Nitrate	
Figure 3.117 Muttaburra - Sulphate	
Figure 3.118 Muttaburra - Iron	
Figure 3.119 Muttaburra - Manganese	
Figure 3.120 Muttaburra - Zinc	
Figure 3.121 Muttaburra - Aluminium	
Figure 3.122 Muttaburra - Boron	
Figure 3.123 Muttaburra - Copper Figure 3.124 Muttaburra – E-Coli	120
r iguio 5.12+ inuttabuita − L-Oui	100

List of Tables

Table 1.1	Listing of Drinking Water Schemes	3
Table 2.1	Alpha Infrastructure Details	
Table 2.2	Aramac Infrastructure Details	11
Table 2.3	Barcaldine Infrastructure Details	. 15
Table 2.4	Jericho Infrastructure Details	
Table 2.5	Muttaburra Infrastructure Details	23
Table 2.6	Barcaldine Regional Council Stakeholders	
Table 3.1	Alpha Reticulated Water	
Table 3.2	Alpha water quality complaints	
Table 3.3	Alpha Source Water	
Table 3.4	Cumulative Mining Workforce	
Table 3.5	Alpha Hazard Identification, Risk Assessment and Uncertainty	56
Table 3.6	Hazard Identification and Risk Assessment Team	59
Table 3.7	Aramac Reticulated Water	
Table 3.8	Aramac water quality complaints	
Table 3.9	Aramac Hazard Identification, Risk Assessment and Uncertainty	
Table 3.10	Hazard Identification and Risk Assessment Team	
Table 3.11	Barcaldine Reticulated Water	
Table 3.12	Water quality complaints	
Table 3.13	Barcaldine Hazard Identification, Risk Assessment and Uncertainty	
Table 3.14	Hazard Identification and Risk Assessment Team	
Table 3.15	Jericho Reticulated Water	
Table 3.16	Water quality complaints	
Table 3.17	Jericho Source Water	
Table 3.18	Jericho Hazard Identification, Risk Assessment and Uncertainty	
Table 3.19	Hazard Identification and Risk Assessment Team	
Table 3.20	Muttaburra Reticulated Water	
Table 3.21	Water quality complaints	
Table 3.22	Muttaburra Hazard Identification, Risk Assessment and Uncertainty	
Table 3.23	Hazard Identification and Risk Assessment Team	
Table 4.1	Measures of Likelihood Utilised in the Risk Assessment	
Table 4.2	Measures of Consequences Utilised in the Risk Assessment	
Table 4.3	Degrees of Uncertainty	
Table 4.4	Risk Analysis Matrix – Level of Risk	
Table 4.5	Defined Acceptable Risk Levels	
Table 4.6	Stakeholders – Risk Assessment	
Table 5.1	Alpha Existing and Proposed Preventative Measures	
Table 5.2	Jericho Existing and Proposed Preventative Measures	
Table 5.3	Aramac Existing and Proposed Preventative Measures	
Table 5.4	Alpha and Jericho Operation and Maintenance Procedure Documentation	
Table 5.5	Aramac, Barcaldine and Muttaburra Operation and Maintenance Procedure	100
	Documentation	157
Table 5.6	Incident / Emergency levels	
Table 5.7	Management of Incidents and Emergencies	
Table 5.8	Emergency Contact Details and Protocols	
Table 5.9	Alpha Risk Management Improvement Program	
Table 5.10	Jericho Risk Management Improvement Program	
Table 5.11	Aramac, Barcaldine and Muttaburra Risk Management Improvement Program	
Table 5.12	Summary of Water Quality Management Information	
Table 6.1	Alpha and Jericho Operational Monitoring	
Table 6.2	Aramac, Barcaldine and Muttaburra Operational Monitoring	174
Table 6.3	Alpha and Jericho Verification Monitoring	176
Table 6.4	Aramac, Barcaldine and Muttaburra Verification Monitoring	178
. 45.0 0.7	, anal, Daroadine and matabara verification monitoring	

1 Registered Service Details

Barcaldine Regional Council (BRC) is located in the Central West of Queensland and comprises the now amalgamated Shires of Aramac, Barcaldine and Jericho covering an area of 53,677 km². To illustrate the vastness of the area served the community furthest West (Muttaburra) is approximately 293km by road west of the community furthest East (Alpha). Figure 1.1 shows the location of the town of Barcaldine relative to Mt. Isa, Townsville, Rockhampton and Brisbane.

Figure 1.1 Barcaldine Location Map

BRC is the drinking water service provider (SPID 473) for the following five drinking water supply schemes in the region (refer to Figure 1.2):

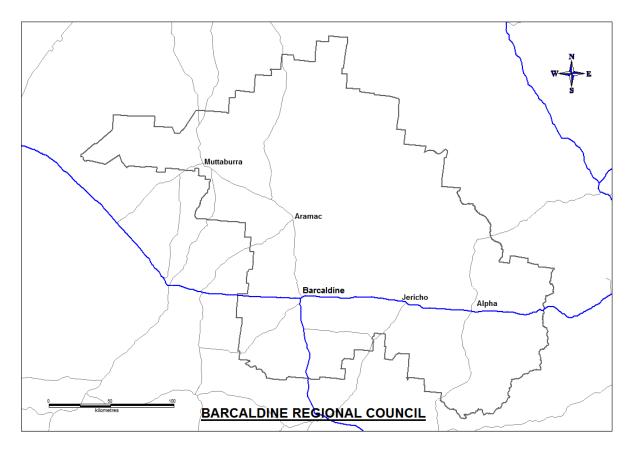
Alpha Water Supply Scheme

Alpha is located approximately 460km west of Rockhampton on the Capricorn Highway on the eastern side of the Great Dividing Range on the flood plain of Alpha Creek.

Aramac Water Supply Scheme

Aramac is located 67km north of Barcaldine. Aramac is located on the northern side of Aramac Creek which runs into the Thompson River midway between Longreach and Muttaburra.

Barcaldine Water Supply Scheme


Barcaldine is located at the intersection of the Landsborough and Capricorn Highways, 600km due west of Rockhampton.

Jericho Water Supply Scheme

Jericho is located approximately 520km west of Rockhampton on the Capricorn Highway, on the western side of the Great Dividing Range.

• Muttaburra Water Supply Scheme

Muttaburra is located 119km north of Longreach and 85km north-west of Aramac.

Figure 1.2 Barcaldine Regional Council

BRC is a medium Drinking Water Service Provider (DWSP) as defined in the Water Supply (Safety and Reliability) Act 2008 and provides drinking water for an approximate population of 2,259 with a total demand of approximately 6.725 ML/d. BRC may be referred to as the DWSP throughout this document.

1.1 Approval Application Form

Refer to Appendix A Drinking Water Quality Management Plan Approval Application.

1.2 Further Information Required

Table 1.1 below lists the drinking water schemes, identifies the operational responsibilities for each scheme and details the current and future population and demand for each scheme.

Table 1.1 Listing of Drinking Water Schemes

	_		2016		Future (2026) ¹			
Scheme Name	Operator (organisation)	Communities Served	Population Served	Connections	Demand ML/d	Population Served	Connections	Demand ML/d
Alpha		Alpha	335	304	0.841	361	316	0.908
Aramac	Barcaldine Regional	Aramac	299	233	0.73	323	252	0.788
Barcaldine		Barcaldine	1422	845	4.398	1536	912	4.750
Jericho	Council	Jericho	115	139	0.132	124	150	0.143
Muttaburra		Muttaburra	88	104	0.624	95	112	0.674
Total			2259	1625	6.725	2439	1742	7.263

¹ A population growth of .08% per annum has been applied in accordance with QLD gov statistics office regional projections. BRC will monitor population changes and undertake a network analysis of the affected schemes. Should significant growth be observed. BRC will incorporate any new information into the DWQMP during future reviews.

2 Details of Infrastructure for Providing the Service

BRC is the DWSP for five water supply schemes. The infrastructure for providing the service is detailed in the sections outlined below:

- 2.1 Alpha Water Supply Scheme
- 2.2 Aramac Water Supply Scheme
- 2.3 Barcaldine Water Supply Scheme
- 2.4 Jericho Water Supply Scheme
- 2.5 Muttaburra Water Supply Scheme

For Alpha and Jericho water supply schemes, sub artesian bore water is pumped to a water treatment plant where the water undergoes the following water treatment processes:

- aeration,
- flocculation,
- clarification,
- filtration,
- chlorination,
- pH adjustment.

After treatment water is stored in a ground level reservoir and elevated reservoir prior to being reticulated to the communities.

For Aramac, Barcaldine and Muttaburra water supply schemes, water is untreated and artesian bore water is reticulated to the communities. For Aramac and Muttaburra bore water is supplied directly into reticulation. Barcaldine bore water is pumped into ground level reservoirs before being pumped into reticulation.

2.1 Alpha Water Supply Scheme

Alpha water supply scheme is comprised of five pumped sub-artesian bores delivering water to a water treatment plant. The bore water requires treatment prior to delivery into the water reticulation system.

The treatment process includes aeration, flocculation, clarification, filtration, chlorination and pH adjustment. Prior to flocculation water is dosed with alum. Water is mixed in a flocculation tank and then passed through an inclined plate clarifier prior to rapid gravity sand filtration. The treated water is dosed with Chlorine and the pH is adjusted prior to delivery to the ground level and elevated reservoirs. The rapid gravity sand filters are back washed using water from the ground level reservoir; the backwash is stored in the recycled water tank. Liquid alum sludge can also be drawn off the flocculation tank and clarifier and this is stored in the recycled water tanks. Water stored in the recycled water tanks can be used for irrigation purposes on the green surrounding the water treatment plant. Treated water is then pumped into a 1,071kL ground level reservoir and then into a 329kL elevated reservoir and reticulation.

The treatment plant may be bypassed during maintenance / breakdown however considering the storage capacity on site the treatment plant may only be bypassed in exceptional circumstances. During the unlikely event of water shortages water can be carted from artesian sources.

During power outages a limited supply of treated water can be supplied to the town via the elevated reservoir. This gives sufficient time for the town back-up generators to come online. The town back-up generators are maintained by Ergon.

2.1.1 Schematic

Figure 2.1 shows a schematic of the Alpha water supply scheme. Figure 2.2 below shows a schematic of the Alpha Water Treatment Plant. Refer to Appendix B for water supply layouts superimposed on aerial photos.

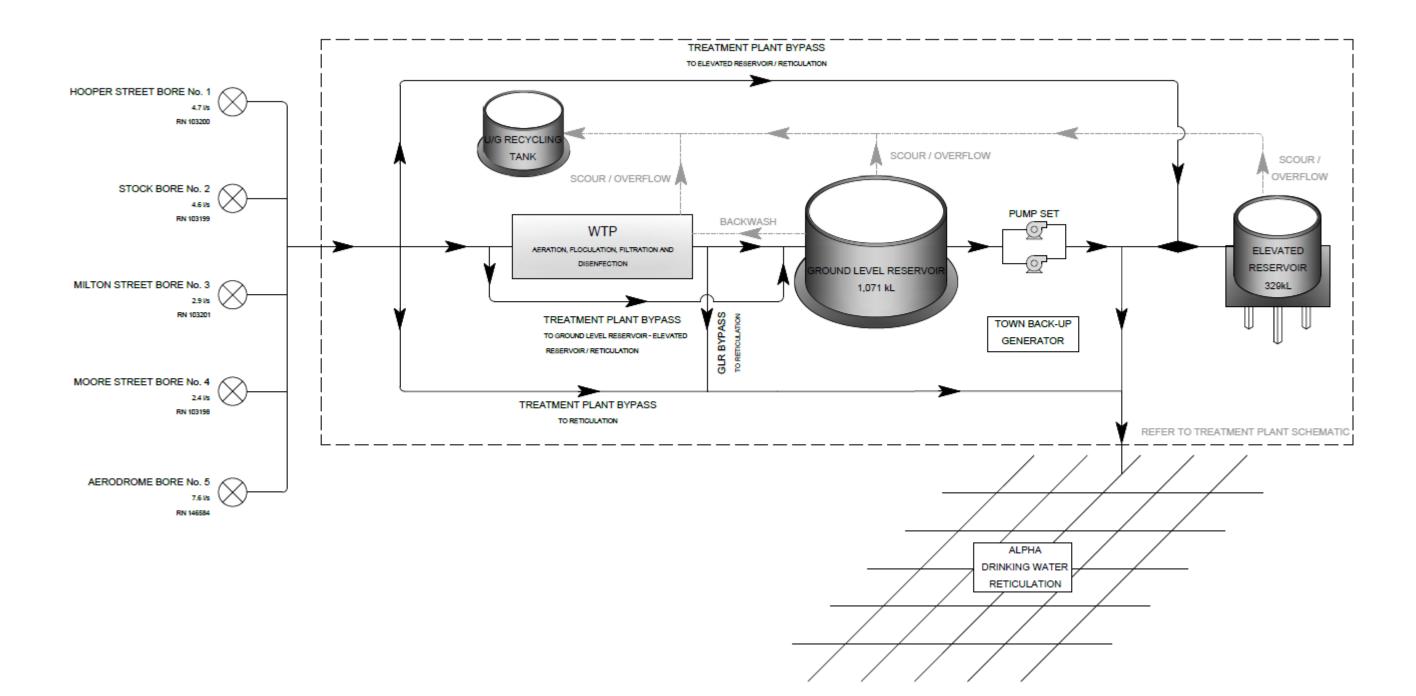


Figure 2.1 Alpha Service Schematic Layout

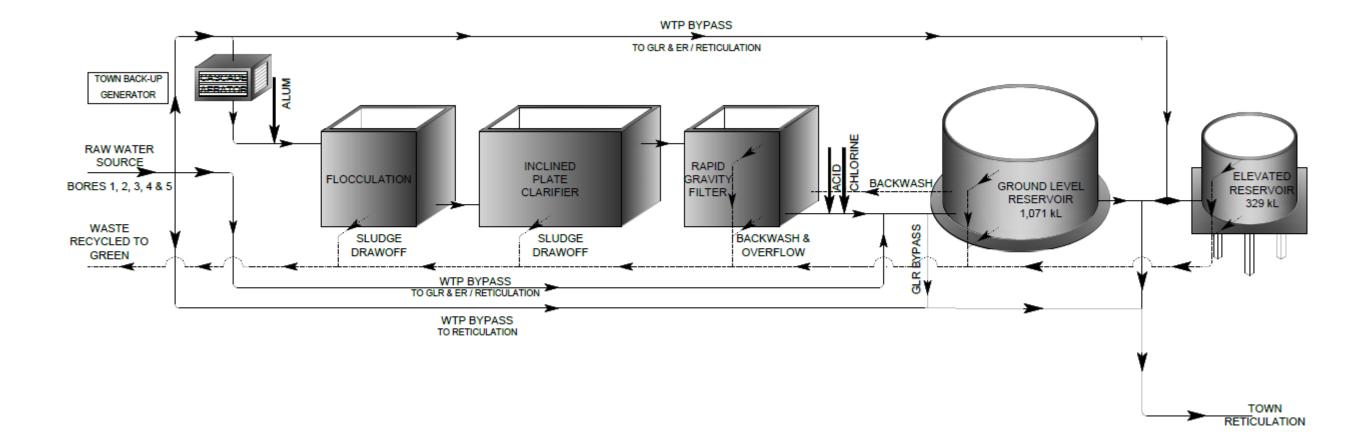


Figure 2.2 Alpha Treatment Plant Schematic

2.1.2 Source, Treatment and Distribution Details

Table 2.1 provides the following information for Alpha's infrastructure:

- Source details;
- Treatment processes;
- Disinfection processes; and
- Distribution and reticulation.

Table 2.1 Alpha Infrastructure Details

Component		Alpha Water Supply Scheme		
Sources	Name	Hooper Street Bore (No. 1)		
	Туре	Shallow Bore (RN 100673)		
	% of supply	21		
	Reliability	Does not run dry		
	Water quality issues	Raw water does not comply with the Australian Drinking Water Guidelines.		
	Name	Stock Bore (No. 2)		
	Туре	Shallow Bore (RN 100674)		
	% of supply	21		
	Reliability	Does not run dry		
	Water quality issues	Raw water does not comply with the Australian Drinking Water Guidelines		
	Name	Milton Street Bore (No. 3)		
	Туре	Shallow Sub Artesian Bore (RN 100676)		
	% of supply	13		
	Reliability	Reliable		
	Water quality issues	Raw water does not comply with the Australian Drinking Water Guidelines.		
	Name	Moore Street Bore (No. 4)		
	Туре	Shallow Bore (RN 100675)		
	% of supply	11		
	Reliability	Reliable		
	Water quality issues	Raw water does not comply with the Australian Drinking Water Guidelines.		
	Name	Aerodrome Bore (No. 5)		
	Туре	Shallow Bore (RN 146584)		
	% of supply	34		
	Reliability	Reliable		
	Water quality issues	Raw water does not comply with the Australian Drinking Water Guidelines.		
Sourcing	Туре	Shallow Sub Artesian Bore		
Infrastructure	Description	The 5 bores are located in Alpha on Hopper, Milton and Moore Streets, adjacent to the Stock Yard and at the Alpha Aerodrome. The bores are approximately 70 m deep and yield 4.7, 4.6, 2.9, 2.4 and 7.6 l/s respectively for Bores 1, 2, 3, 4 and 5. Bore use is rotated therefore changes to yield are unnoticeable.		

Component		Alpha Water Supply Scheme
Are there any sources that do not undergo treatment prior to supply?	No	
Water Treatment	Name	Alpha Water Treatment Plant
Plant	Process	Process comprises cascade aeration, flocculation, inclined plate clarification, rapid gravity sand filtration and pH adjustment
	Design Capacity (20 hr. operation)	720 kL
	Daily flow range	10 l/s (capacity)
	Chemicals added	Calcium hypochlorite, alum and acid
	Standby chemical dosing facilities (Y/N)	No
	Water sourced from	Hooper Street Bore (No. 1) 21%
	and %	Stock Bore (No. 2) 21%
		Milton Street Bore (No. 3) 13%
		Moore Street Bore (No. 4) 11%
	% of average day	Aerodrome Bore (No. 5) 34% 100
	demand provided	100
	% of scheme supply	100
	Distribution area	
	Bypasses / Variations	Treatment plant can be bypassed in the event of a breakdown for short periods. Reservoirs can also be bypassed (either before or after treatment plant bypass).
Are there any	No	
sources that do not		
undergo disinfection prior to supply?		
Disinfection	Location	After flocculation and filtration.
	Туре	Chlorination
	Dose rate	56l/day (average) (solution in water 1.5% available chlorine)
	Target residual levels	0.5mg/l
	Duty/standby	Duty (and spares)
	Dosing arrangements	fixed
	Alarms	Yes
	Auto shut-off	Not applicable
	arrangements	

Component		Alpha Water Supply Scheme
Distribution and	Pipe material	uPVC
Reticulation System	Age range	16 (2018)
	Approx. % of total length	80%
	Pipe material	Poly
	Age range	21 – 33 (2018)
	Approx. % of total length	20%
	Areas where potential long detention periods could be expected	None
	Areas where low water pressure (eg < 12 m) could be expected during peak or other demand periods)	The golf course and houses in that vicinity may experience brief periods of low water pressure during peak demand.
Reservoirs	Ground Level (No)	1
	Name	Alpha Ground Level Reservoir
	Capacity (ML)	1.071
	Roofed	Yes
	Vermin-proof (Y/N)	Yes
	Runoff directed off roof	Yes
	Elevated (No)	1
	Name	Alpha Elevated Reservoir
	Capacity (ML)	0.329
	Roofed	Yes
	Vermin-proof	Yes
	Runoff directed off roof	Yes
Water quality responsibility changes	Entire water supply scheme	Barcaldine Regional Council

2.2 Aramac Water Supply Scheme

Aramac water supply scheme is comprised of two artesian bores (one pumped) delivering water directly to reticulation. The water supplied into reticulation is artesian bore water. The bore water is of a quality that does not require treatment as raw water quality complies with the Australian Drinking Water Guidelines. Refer to Table 3.7 and Section 3.2.1 (b) for water quality data indicating why the source does not undergo treatment.

Power outages will have limited effect on the Aramac water supply scheme as currently one of the bores have natural artesian pressure and can provide sufficient water supply during power outages.

2.2.1 Schematic

Figure 2.3 shows a schematic of the Aramac's Water Supply Scheme. Refer to Appendix B for water supply layouts superimposed on aerial photos.

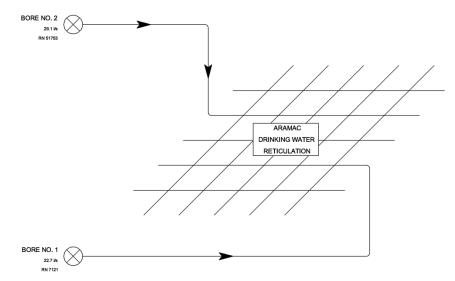


Figure 2.3 Aramac Service Schematic Layout

2.2.2 Source, Treatment and Distribution Details

Table 2.2 provides the following information for Aramac's infrastructure:

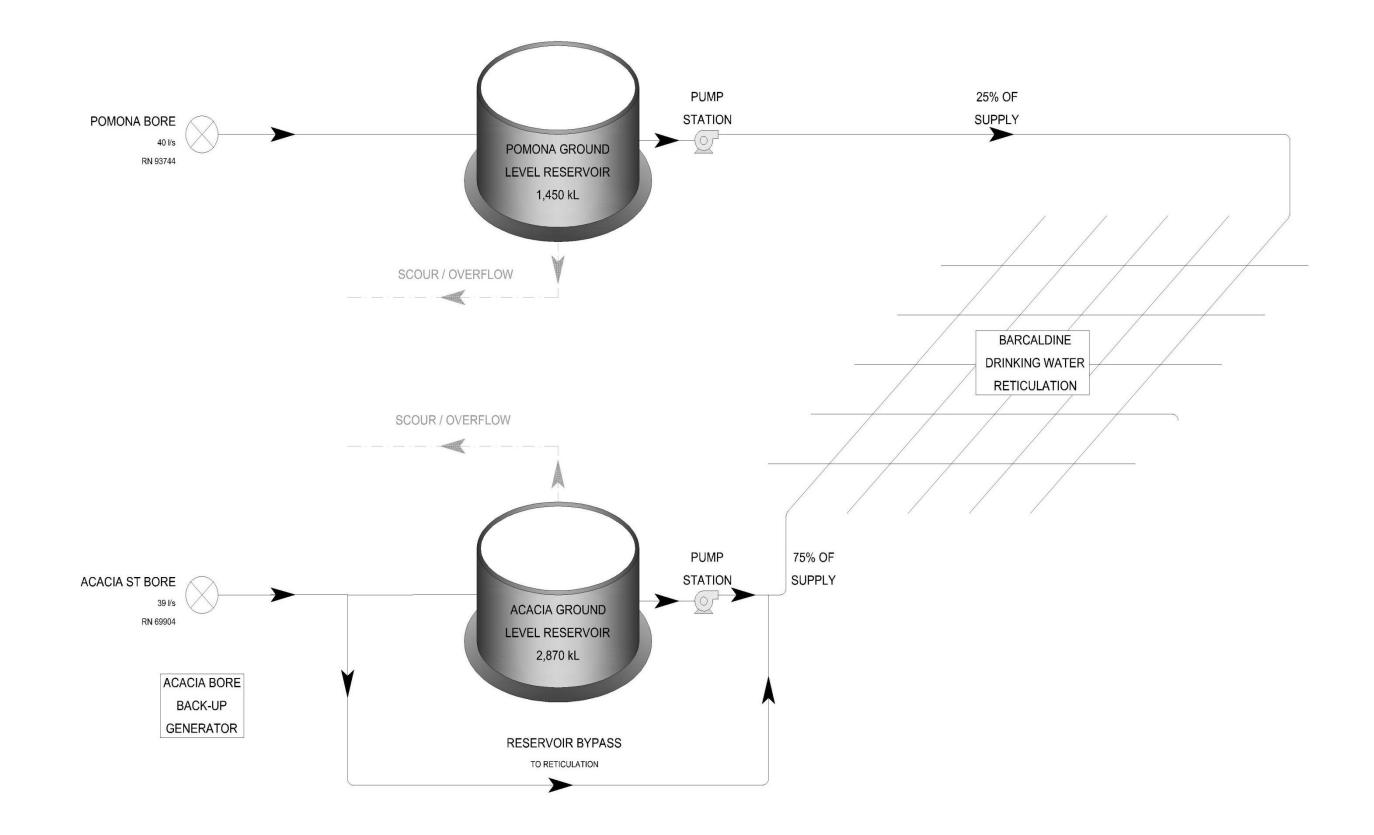
- Source details;
- Distribution and reticulation.

Table 2.2 Aramac Infrastructure Details

Component		Aramac Water Supply Scheme
Sources	Name	Bore No. 1
	Туре	Deep Artesian Bore (RN 7121)
	% of supply	53%
	Reliability	Does not run dry however lack of storage may present problems during fire fighting
	Water quality issues	Raw water complies with the Australian Drinking Water Guidelines.
	Name	Bore No. 2
	Туре	Deep Artesian Bore (RN 51753)

Component		Aramac Water Supply Scheme
	% of supply	47%
	Reliability	Does not run dry however lack of storage may present problems during fire fighting
	Water quality issues	Raw water complies with the Australian Drinking Water Guidelines.
Sourcing Infrastructure	Type Description	Deep Artesian Bore The town bores 1 and 2 are located on the eastern and western ends of Kerr Street respectively. Bores 1 and 2 are 366m and 362m deep respectively. The bores currently yield 32.7 I/s and 29.1 I/s respectively. Bore No. 1 is free flowing, while Bore No. 2 is pumped. Bore use is rotated therefore changes to yield are unnoticeable.
Are there any sources that do not undergo treatment prior to supply?		esian bores with water of a quality that atment. Raw water quality generally complies ater Guidelines
Are there any sources that do not undergo disinfection prior to supply?	Yes Town Bores 1 and 2. Deep art generally does not require disi	resian bores with water of a quality that infection.
Distribution and	Pipe material	AC
Reticulation	Age range	35 – 70 (2018)
System	Approx. % of total length	31.0%
	Pipe material	GI
	Age range	70 (2018)
	Approx. % of total length	4.0%
	Pipe material	POLY
	Age range	42 (2018)
	Approx. % of total length	29.0%
	Pipe material	PVC
	Age range	12 – 35 (2018)
	Approx. % of total length	3%
	Pipe material	VI
	Age range	12 (2018)
	Approx. % of total length	26%
	Areas where potential long detention periods could be expected	Yes, Dead ends on Boundary St and Lodge St
	Areas where low water pressure (eg < 12 m) could be expected during peak or other demand periods)	None

Component		Aramac Water Supply Scheme
Water quality responsibility changes	Entire water supply scheme	Barcaldine Regional Council


2.3 Barcaldine Water Supply Scheme

Barcaldine water supply scheme is comprised of two pumped artesian bores. Bore water is pumped from Pomona Bore into a 1,450 kL ground level reservoir. From the reservoir water is pumped directly into reticulation. Bore water is also pumped from Acacia Street Bore into a 2,870 kL ground level reservoir. Water is then pumped into reticulation from the reservoir or may be pumped directly into reticulation from the bore should it be required. The water supplied into reticulation is untreated. Bore water is of a quality that does not require treatment as the raw water quality complies with the Australian Drinking Water Guidelines. Refer to Table 3.11 and Section 3.3.1 for water quality data indicating why the source does not undergo treatment.

During power outage the Acacia Street back-up generator can be used to power pumps to supply water to the town.

2.3.1 Schematic

Figure 2.4 shows a schematic of the Barcaldine water supply scheme. Refer to Appendix B for water supply layouts superimposed on aerial photos.

Figure 2.4 Barcaldine Service Schematic Layout

2.3.2 Source, Treatment and Distribution Details

Table 2.3 provides the following information for Barcaldine's infrastructure:

- Source details;
- Distribution and reticulation.

Table 2.3 Barcaldine Infrastructure Details

Component		Barcaldine Water Supply Scheme
Sources	Name	Acacia Street Bore
	Туре	Deep Artesian Bore (RN 69904)
	% of supply	75%
	Reliability	Does not run dry
	Water quality issues	Raw water generally complies with the Australian Drinking Water Guidelines
	Name	Pomona Bore
	Туре	Deep Artesian Bore (RN 93744)
	% of supply	25%
	Reliability	Does not run dry
	Water quality issues	Raw water generally complies with the Australian Drinking Water Guidelines.
Sourcing	Туре	Deep Artesian Bore
Infrastructure	Description	The Acacia Street bore is located at the Western end of Acacia. Pomona Bore is located on the Corner of Pine and Yew Street. The bores are 460m and 465m deep respectively. The bores yield is 37 l/s and 40 l/s respectively. The Acacia Street Bore has a free flowing pressure of 5m and yield of 21 l/s. Bore use is rotated therefore changes to yield are unnoticeable.
Are there any sources that do not undergo treatment prior to supply?		es with water of a quality that generally does ter quality generally complies with the delines
Are there any	Yes	
sources that do not undergo disinfection prior to supply?	Acacia Street and Pomona Bo that generally does not require	res. Deep artesian bores with water of a quality disinfection.
Distribution and	Pipe material	AC
Reticulation	Age range	25 – 58 (2018)
System	Approx. % of total length	17.0%
	Pipe material	PVC
	Age range	4 - 74
	Approx. % of total length	37.7%
	Pipe material	DICL

Component		Barcaldine Water Supply Scheme
	Age range	15 (2018)
	Approx. % of total length	0.1%
	Pipe material	GI
	Age range	78 (2018)
	Approx. % of total length	5%
	Pipe material	POLY
	Age range	-8 - 58 (2018)
	Approx. % of total length	33%
	Pipe material	RCP
	Age range	43 – 78 (2018)
	Approx. % of total length	7.7%
	Areas where potential long detention periods could be expected	None
	Areas where low water pressure (eg < 12 m) could be expected during peak or other demand periods)	None
Reservoirs	Ground Level (No)	1
	Name	Pomona Bore Ground Level Reservoir
	Capacity (ML)	1.45
	Roofed	Yes
	Vermin-proof	Yes
	Runoff directed off roof	Yes
	Ground Level (No)	2
	Name	Acacia Street Bore Ground Level reservoir
	Capacity	2.87
	Roofed	Yes
	Vermin-proof	Yes
	Runoff directed off roof	Yes
Water quality responsibility changes	Entire water supply scheme	Barcaldine Regional Council

2.4 Jericho Water Supply Scheme

Jericho water supply scheme is comprised of two pumped sub-artesian bores delivering water to a water treatment plant. The bore water requires treatment prior to delivery into the water reticulation system.

The treatment process includes aeration, flocculation, clarification, filtration, chlorination and pH adjustment. Prior to flocculation water is dosed with alum and pre dosed with chlorine. Water is mixed in a flocculation tank and then passed through an inclined plate clarifier prior to rapid gravity sand filtration. The treated water is dosed with Chlorine and the pH is adjusted prior to delivery to the ground level and elevated reservoirs. The rapid gravity sand filters are back washed using water from the ground level reservoir; the backwash is stored in the recycled water tank. Liquid alum sludge can also be drawn off the flocculation tank and clarifier and this is stored in the recycled water tanks. Water stored in the recycled water tanks can be used for irrigation purposes on the green surrounding the water treatment plant.

Treated water is then pumped into a 507 kL ground level reservoir and then into a 253 kL elevated reservoir and reticulation.

The treatment plant may be bypassed during maintenance / breakdown however considering the storage capacity on site the treatment plant may only bypassed in exceptional circumstances. During the unlikely event of water shortages water can be carted from artesian sources.

During power outages a limited supply of treated water can be supplied to the town via the elevated reservoir. This gives sufficient time for the mobile back-up generators to come online.

2.4.1 Schematic

Figure 2.5 shows a schematic of the Jericho water supply scheme. Figure 2.6 shows a schematic of the Jericho Water Treatment Plant. Refer to Appendix B for water supply layouts superimposed on aerial photos.

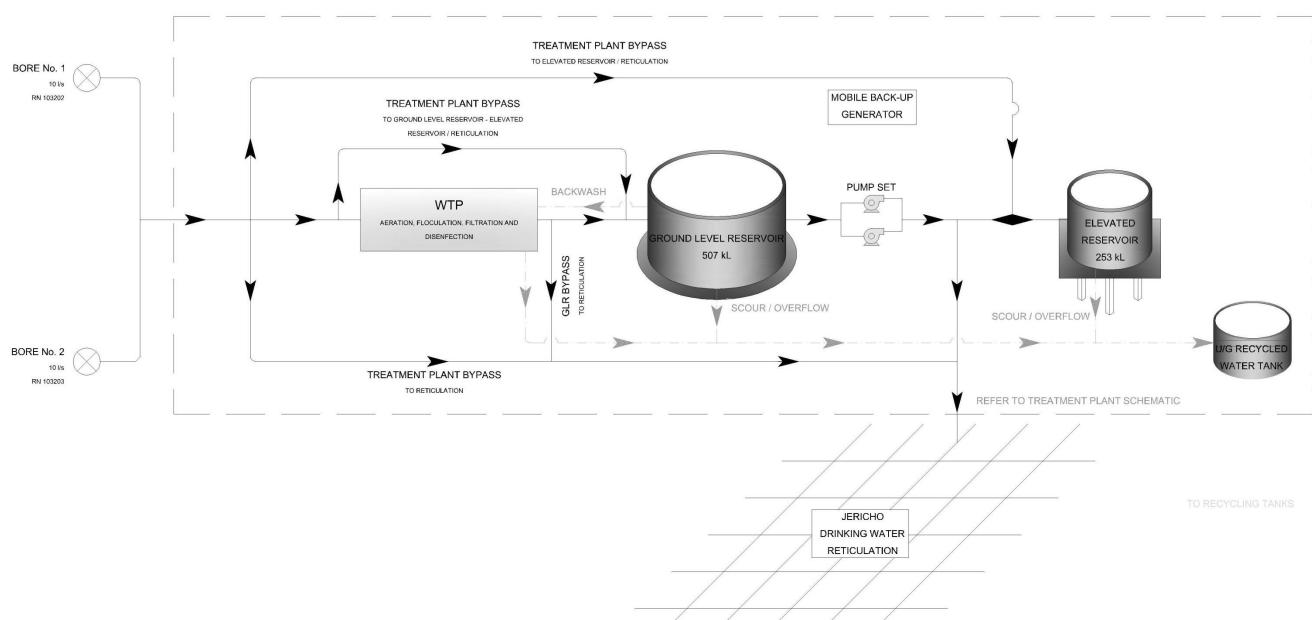
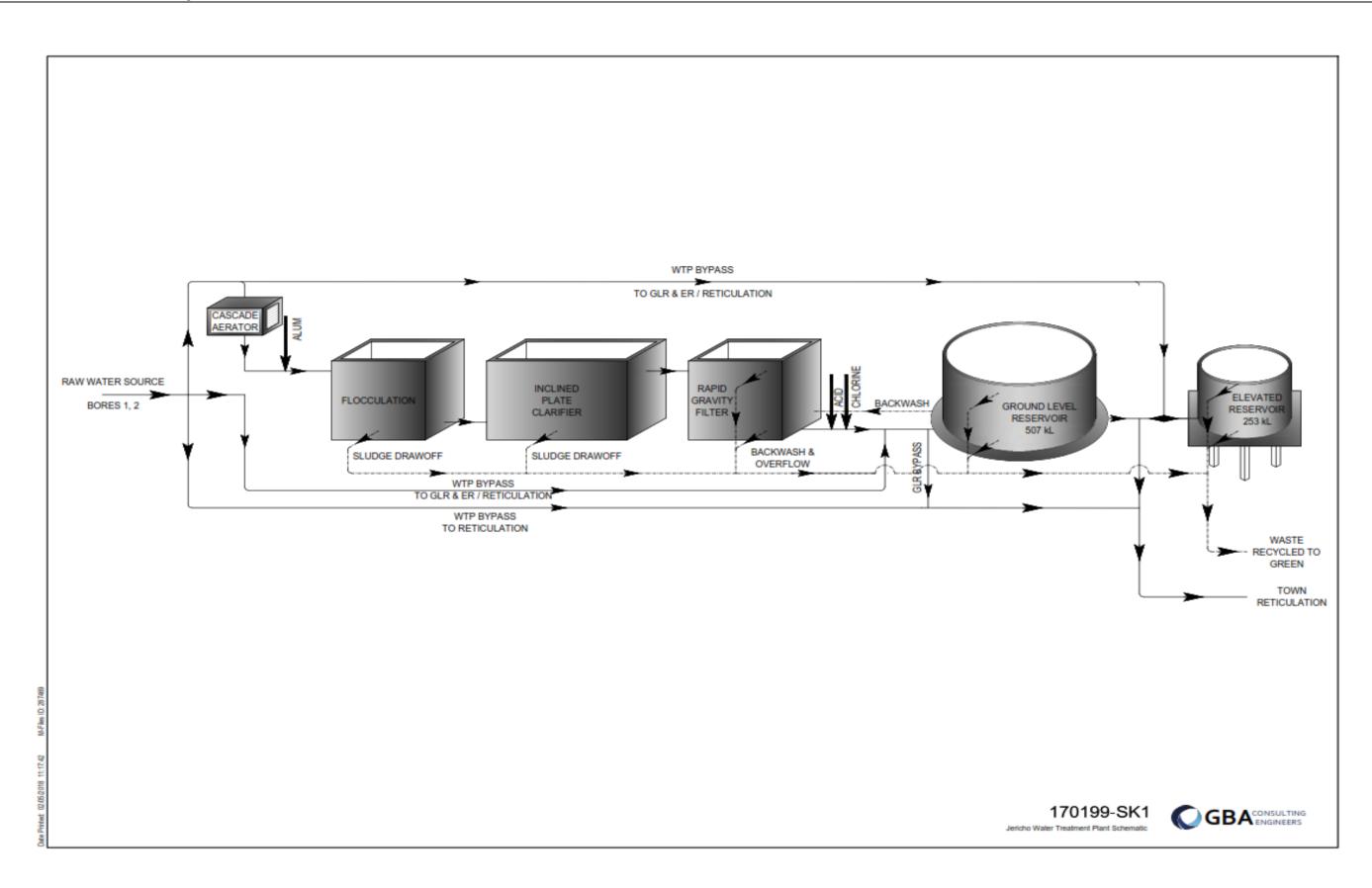



Figure 2.5 Jericho Service Schematic Layout

Figure 2.6 Jericho Treatment Plant Schematic

2.4.2 Source, Treatment And Distribution Details

Table 2.4 provides the following information for Jericho's infrastructure:

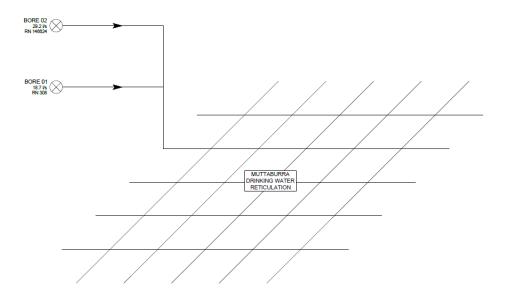
- Source details;
- Treatment processes;
- Disinfection processes; and
- Distribution and reticulation.

Table 2.4 Jericho Infrastructure Details

Component		Jericho Water Supply Scheme
Sources	Name	Darwin Street Bore No. 1
	Туре	Shallow Bore (RN 103202)
	% of supply	50
	Reliability	Does not run dry
	Water quality issues	Raw water does not completely comply with the Australian Drinking Water Guidelines. Iron, high pH and TDS are generally outside aesthetic guideline values.
	Name	Darwin Street Bore No. 2
	Туре	Shallow Bore (RN 103203)
	% of supply	50
	Reliability	Does not run dry
	Water quality issues	Raw water generally does not completely comply with the Australian Drinking Water Guidelines. Iron, high pH and TDS are occasionally outside aesthetic guideline values.
Sourcing	Туре	Shallow Sub Artesian Bore
Infrastructure	Description	The dual bore field is located on the same site as the water treatment plant off Darwin Street. The bores are 120m and 124m deep respectively. And yield 10 l/s each. Bore use is rotated therefore changes to yield are unnoticeable. Refer to Appendix D Bore Casing and Stratification Details
Are there any	No	
sources that do not undergo treatment prior to supply?		
Water Treatment	Name	Jericho Water Treatment Plant
Plant	Process	Process comprises cascade aeration, flocculation, inclined plate clarification, rapid
		gravity sand filtration and pH adjustment
	Design Capacity (20 hr. operation)	gravity sand filtration and pH adjustment 1008 kL

Component		Jericho Water Supply Scheme
	Chemicals added	Calcium hypochlorite (post), alum and Hydrochloric Acid.
	Standby chemical dosing facilities	Yes
	Water sourced from and %	Bore No. 1 50% Bore No. 2 50%
	% of average day demand provided	100
	% of scheme supply Distribution area supplied	100
	Bypasses / Variations	Treatment plant can be bypassed in the event of a breakdown for short periods. Reservoirs can also be bypassed (either before or after treatment plant bypass).
Are there any sources that do not undergo disinfection prior to supply?	No	
Disinfection	Location	After cascade aeration and post flocculation and filtration.
	Туре	Chlorination
	Dose rate	9l/day (average) (solution in water, 1.5% available chlorine)
	Target residual levels	0.5mg/l
	Duty/standby	Duty and standby
	Dosing arrangements	Fixed
	Alarms	Yes
	Auto shut-off arrangements	None
Distribution and	Pipe material	uPVC
Reticulation	Age range	17 (2018)
System	Approx. % of total length	85%
	Pipe material	Poly
	Age range	17 – 35 (2018)
	Approx. % of total length	15%
	Areas where potential long detention periods could be expected	None
	Areas where low water pressure (eg < 12 m) could be expected during peak or other demand periods)	None
Reservoirs	Ground Level (No)	1
	Name	Jericho Ground Level Reservoir (WTW)
	Capacity (ML)	0.507
	Roofed	Yes

Component		Jericho Water Supply Scheme
	Vermin-proof	Yes
	Runoff directed off roof	Yes
	Construction Materials	Steel construction with internal lining
	Elevated (No)	1
	Name	Jericho Elevated Reservoir (WTW)
	Capacity	0.253
	Roofed	Yes
	Vermin-proof	Yes
	Runoff directed off roof	Yes
Water quality responsibility changes	Entire water supply scheme	Barcaldine Regional Council


2.5 Muttaburra Water Supply Scheme

Muttaburra water supply scheme is comprised of two artesian bores delivering water directly to reticulation. Both bores are connected to the reticulation system and are supplying water throughout the distribution system. The water supplied into reticulation is untreated. The bore water is of a quality that does not require treatment as the raw water quality complies with the Australian Drinking Water Guidelines. Refer to Table 3.20 and Section 3.5.1 for water quality data indicating why the source does not undergo treatment.

Power outages will have no effect on the Muttaburra water supply scheme as the bore currently supplies water to town under natural artesian pressure.

2.5.1 Schematic

Figure 2.7 shows a schematic of the Muttaburra's Water Supply Scheme. Refer to Appendix B for water supply layouts superimposed on aerial photos.

Figure 2.7 Muttaburra Service Schematic Layout

2.5.2 Source, Treatment And Distribution Details

Table 2.5 provides the following information for Muttaburra's infrastructure:

- Source details;
- Distribution and reticulation.

Table 2.5 Muttaburra Infrastructure Details

Component		Muttaburra Water Supply Scheme
Sources	Name	Town Bore No.1
	Туре	Deep Artesian Bore (RN 308)
	% of supply	30%
	Reliability	Does not run dry however lack of storage may present problems during fire fighting
	Water quality issues	Raw water generally complies with the Australian Drinking Water Guidelines
	Name Type % of supply Reliability	Town Bore No. 2 Deep Artesian Bore (RN146624) 70% Does not run dry however lack of storage may present problems during fire fighting
	Water quality issues	Raw water generally complies with the Australian Drinking Water Guidelines
Sourcing	Туре	Deep Artesian Bore
Infrastructure	Description	The Town Bore 1 and 2 are located at the western end of Sword Street. The bores are 825m and 823m deep respectively. The bores have a free flowing yield is 18.7 l/s and 29.2l/s. The bores have a free flowing pressure of 24.5kpa and 22.9kpa. These bores deliver water directly into reticulation without pumping.
Are there any sources that do not undergo treatment prior to supply?		sian bores with water of a quality that generally w water quality generally complies with the delines
Are there any sources that do not undergo disinfection prior to supply?	Yes Town Bore 1 and 2. Deep arte does not require disinfection.	esian bore with water of a quality that generally
Distribution and	Pipe material	AC
Reticulation	Age range	33 (2018)
System	Approx. % of total length	63%
	Pipe material	PVC
	Age range	20 (2018)
	Approx. % of total length	6.0%
	Pipe material	POLY

Component		Muttaburra Water Supply Scheme
	Age range	21 – 23 (2018)
	Approx. % of total length	31%
	Areas where potential long detention periods could be expected	None
	Areas where low water pressure (eg < 12 m) could be expected during peak or other demand periods)	Low pressure can be expected during firefighting or during periods of sustained high demand.
Water quality responsibility changes	Entire water supply scheme	Barcaldine Regional Council

2.6 Key Stakeholders

Table 2.6 below outlines the relevant stakeholders for BRC water supply schemes in Alpha, Aramac, Barcaldine, Jericho and Muttaburra.

Table 2.6 Barcaldine Regional Council Stakeholders
--

Organisation	Contact Name and Details	Relevance to management of drinking water quality	How the stakeholder is engaged in the DWQMP		
Steven Boxall, Chief Executive Officer P (07) 4651 5625 E: ceo@barcaldinerc.qld.gov.au Barcaldine Regional Council Rick Rolfe, Manager of Engineering Services P (07) 4651 5625 E: ceo@barcaldinerc.qld.gov.au		First Point of Contact Medium Drinking Water Service Provider	Medium Drinking Water Service Provider		
George Bourne & Associates	P: (07) 4651 5177 E: <u>admin@gbassoc.com.au</u>	Consulting Engineers	Risk Management participant, engineering supervision		
Barcaldine Hospital	Oak Street Barcaldine, QLD P: +61 7 4650 4099	Sensitive User	Sensitive User		
Queensland Health Forensic & Scientific Services	P: (07) 3274 9070	Water Analysis Authority	Chemical Analysis and Reporting on Water Quality		
Queensland Health Public82-86 Bolsover Street, Rockhampton QLD 4700Health UnitPO Box 946, Rockhampton QLD 4700 P: (07) 4920 6989		Public Health	Public Health		
Aramac Health Care Centre	P: (07) 4651 3259	Sensitive User	Sensitive User		
Alpha Hospital	P: +61 7 4809 700	Sensitive User	Sensitive User		
Muttaburra Health Care Centre	P: +61 7 4658 7500	Sensitive User	Sensitive User		
Barcaldine State School	P: (07) 4651 5333	Sensitive User	Sensitive User		
St Joseph's Catholic Primary School Barcaldine	P: <u>(07) 4651 2450</u>	Sensitive User	Sensitive User		
Aramac State School	P: (07) 4651 3177	Sensitive User	Sensitive User		
Muttaburra State School	P: (07) 4658 7289	Sensitive User	Sensitive User		
Jericho State School	P: (07) 4651 4162	Sensitive User	Sensitive User		
Alpha State School	P: (07) 4987 0888	Sensitive User	Sensitive User		

3 Identify Hazards and Hazardous Events

3.1 Alpha Water Quality and Catchment Characteristics

Alpha water supply is composed of five sub artesian bores which are treated prior to reticulation. The source water was not of a sufficient quality to reticulate directly to the town.

3.1.1 Water Quality Information

Water quality information for Alpha includes the following:

- (a) Summary
- (b) Interpolation

3.1.1 (a) Summary

Table 3.1 below summarises the available reticulated water quality for the Alpha water supply scheme. Table 3.3 below summarises the limited raw water quality available².

Figure 3.1 to Figure 3.17 below shows trends of the main characteristics contained in Table 3.1. Figure 3.19 to Figure 3.35 below shows trends of the main characteristics contained in Table 3.3.

The responsibility for obtaining the water samples rests with the DWSP and samples are collected by the Technical Officer monthly. Samples are sent to Queensland Health Scientific Services for analysis. The DWSP also samples and analyses drinking water for E. coli.

 $^{^{\}rm 2}$ DWSP generally only monitors the treated water supplied to reticulation

Table 3.1 Alpha Reticulated Water

Alpha Water Supply Start D			te 21/04/2010 End Date: 19/12/2017								
Characteristic Units		No. of	Summary of Results			Guideline Value					
		Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedance s
Conductivity	uS/cm	89	1930.000	1618.258	878.000	236.624	1836.000				0
рН		89	8.240	7.689	6.830	0.481	8.172			≥6.5 & ≤ 8.5	0
Total Hardness	mg/L as CaCO3	89	299.000	234.551	82.000	35.161	261.600			200	73
Temporary Hardness	mg/L as CaCo3	89	223.000	171.674	38.000	21.062	192.600			200	2
Alkalinity	mg/L CaCo₃	89	223.000	150.787	0.000	57.451	192.600				0
Residual Alkalinity	meq/L	89	191.000	20.775	0.000	58.399	184.000				0
Silica	mg/L	89	87.000	74.618	12.000	11.248	84.000			80	32
Total Dissolved lons	mg/L	89	1150.000	953.461	469.000	143.088	1070.000				0
Total Dissolved Solids	mg/L	89	1110.000	923.056	458.000	139.727	1030.000			600	87
True Colour	Hazen	89	21.000	1.433	0.500	2.544	5.600			15	1
Turbidity	NTU	89	7.000	0.629	0.500	0.697	1.000			5	1
pH (Saturation)*		89	9.100	7.733	7.500	0.228	7.900				0
Saturation Index		89	0.600	-0.048	-2.000	0.508	0.500				0
Mole Ratio		89	4.000	3.019	2.400	0.511	3.800				0
Sodium Absorption Ratio		89	63.600	7.187	4.700	6.054	7.300				0
Figure of Merit		89	0.600	0.488	0.300	0.052	0.560				0
Sodium	mg/L	89	272.000	230.933	134.000	38.001	268.000			180	74
Potassium	mg/L	89	13.000	11.048	7.600	0.791	12.000				0
Calcium	mg/L	89	46.000	34.819	5.900	5.752	39.000				0
Magnesium	mg/L	89	45.000	35.921	16.000	5.176	40.000				0
Hydrogen	mg/L	89	0.000	0.000	0.000	0.000	0.000				0
Bicarbonate	mg/L	89	272.000	203.978	20.000	36.552	233.600				0
Carbonate	mg/L	89	2.200	0.915	0.000	0.657	1.860				0
Hydroxide	mg/L	89	0.000	0.000	0.000	0.000	0.000				0
Chloride	mg/L	89	460.000	363.258	220.000	57.482	410.000			250	80

170199

Alpha Water Supply Start Date		21/04/2010 End Date: 19/12/2017									
Characteristic Units No. of			Summary of Results				Guideline Value				
		Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedance s
Fluoride	mg/L	89	0.400	0.263	0.025	0.064	0.356	1.5	0		0
Nitrate	mg/L	89	41.000	30.878	0.500	8.480	40.000	50	0		0
Sulphate	mg/L	89	48.000	39.157	19.000	7.473	46.600	500	0	250	0
Iron	mg/L	89	0.020	0.005	0.005	0.002	0.005			0.3	0
Manganese	mg/L	89	0.005	0.005	0.005	0.000	0.005	0.5	0	0.1	0
Zinc	mg/L	89	0.610	0.027	0.005	0.080	0.074			3	0
Aluminium	mg/L	88	0.180	0.035	0.025	0.027	0.080			0.2	0
Boron	mg/L	89	0.340	0.279	0.110	0.038	0.330	4	0		0
Copper	mg/L	89	0.140	0.017	0.015	0.014	0.015	2	0	1	0
Chlorate	mg/L	64	1.960	0.620	0.000	0.346	1.219				
E. coli		241	0.000	0.000	0.000	0.000	0.000	0	0		0

Aesthetic	Guideline				
Exceedance					
Health Guideline					
Exceedance					

Table 3.2 Alpha water quality complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem					
2018	0	0								
2017	0	0								
2016	0	0								
2015	0	0	Data not available							
2014	0	0								
2013	0	0								
2012	0	0								
2011	0	0								
2010	4	16.6								
2009	4	16.6								

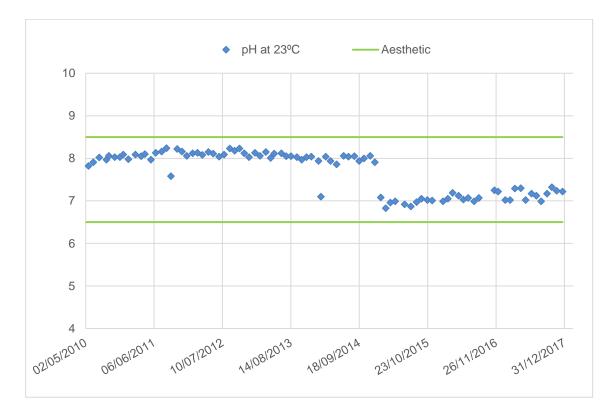
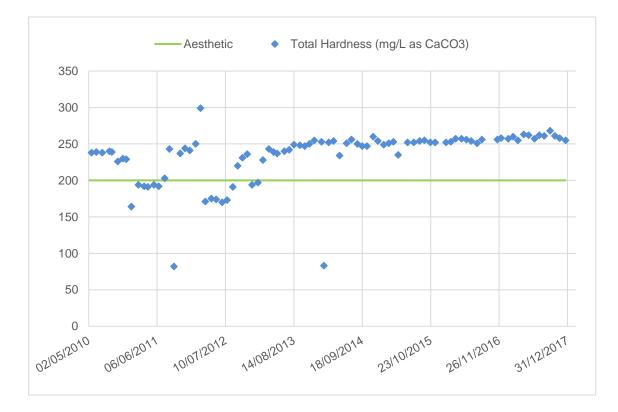



Figure 3.2 Alpha Treated - Total Hardness

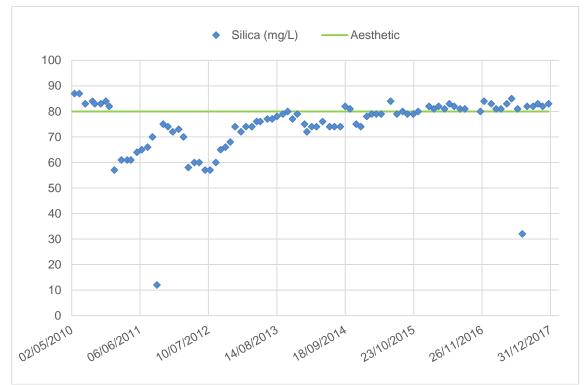


Figure 3.4 Alpha Treated - Total Dissolved Solids

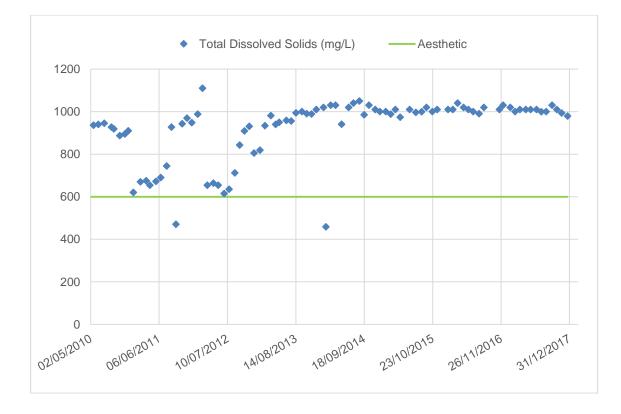
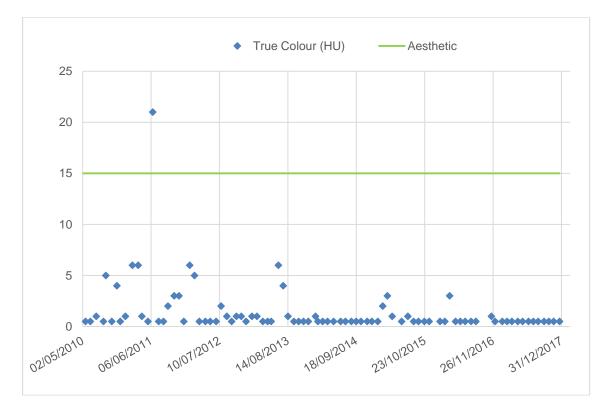
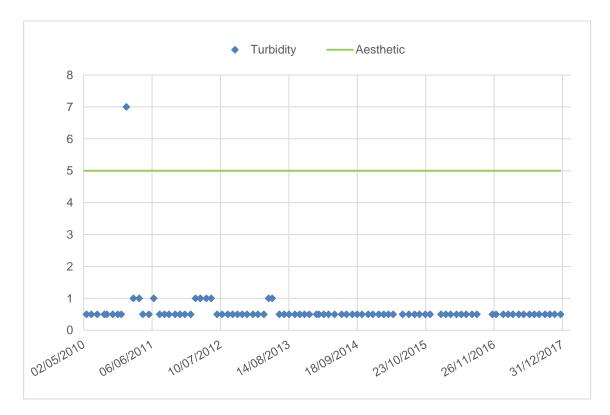
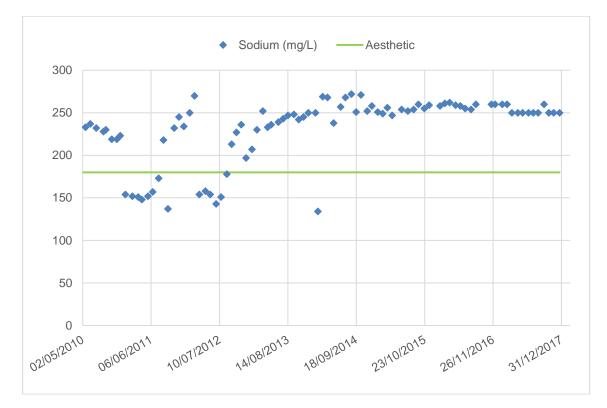
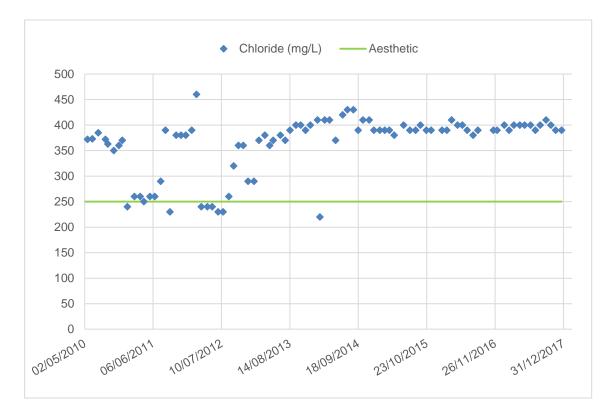


Figure 3.5 Alpha Treated - True Colour


Figure 3.6 Alpha Treated – Turbidity

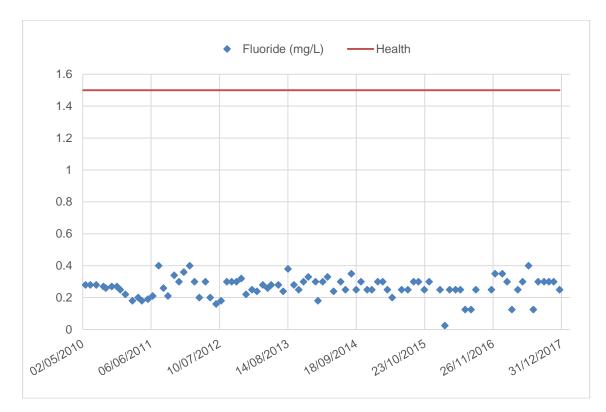
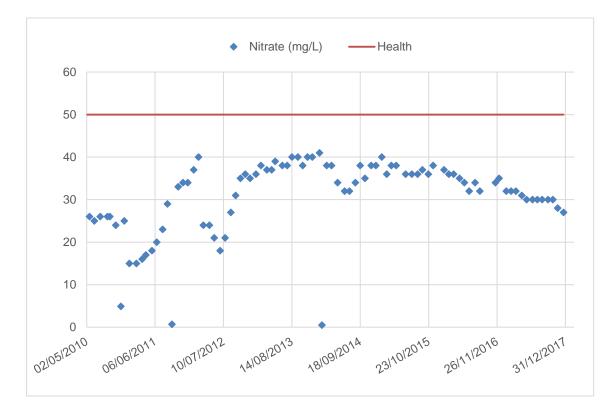



Figure 3.10 Alpha Treated – Nitrate

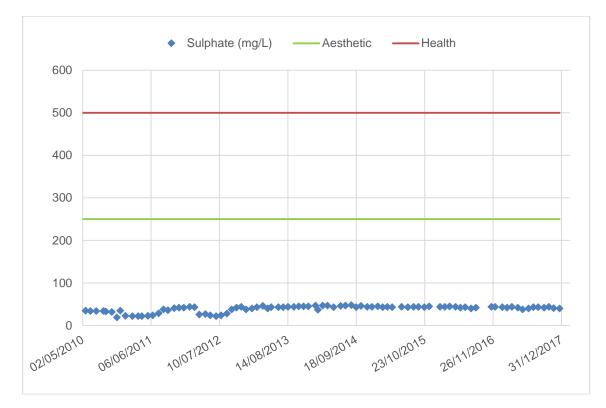
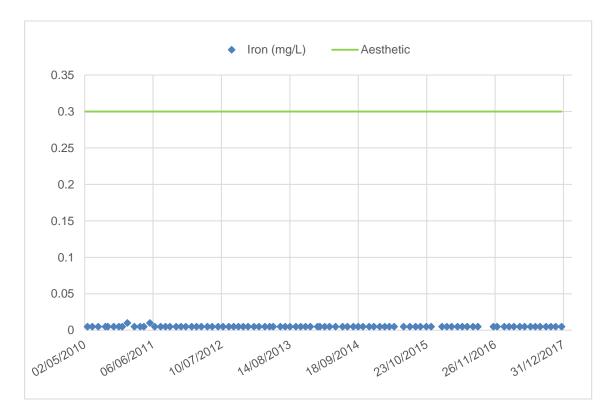



Figure 3.12 Alpha Treated – Iron

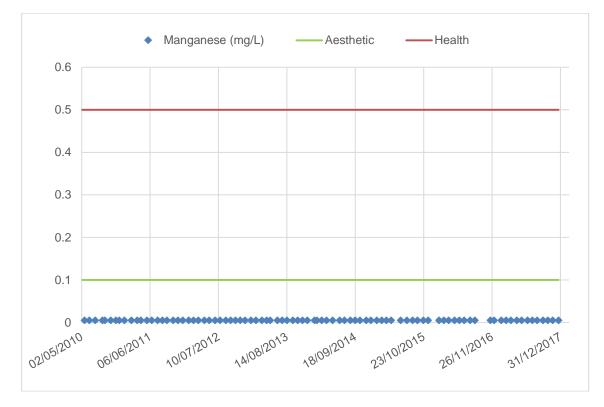
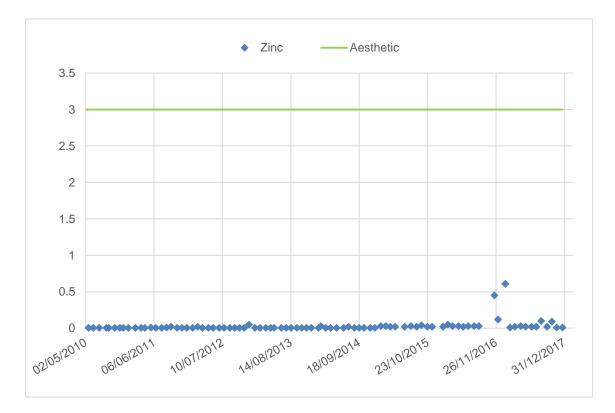



Figure 3.14 Alpha Treated – Zinc

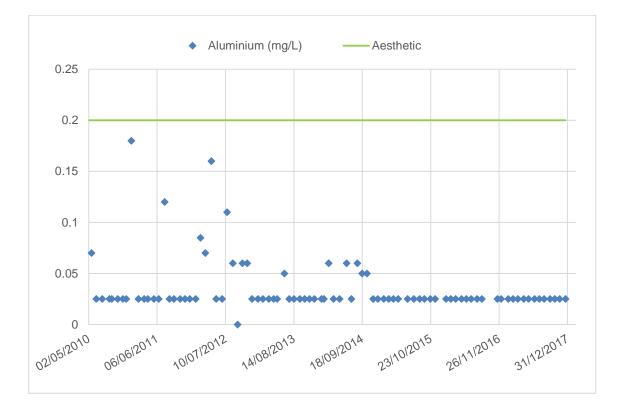
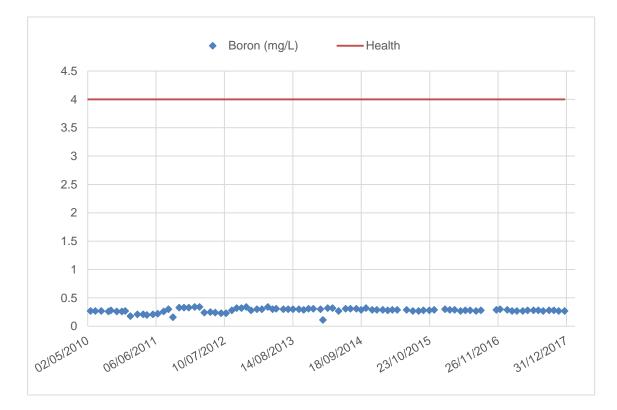
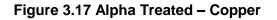




Figure 3.16 Alpha Treated – Boron

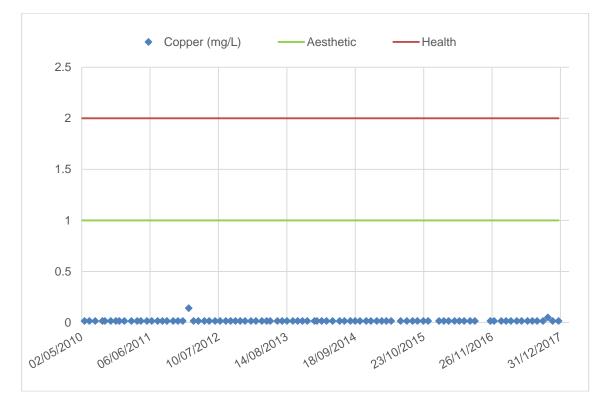


Figure 3.18 Alpha Treated – Chlorate

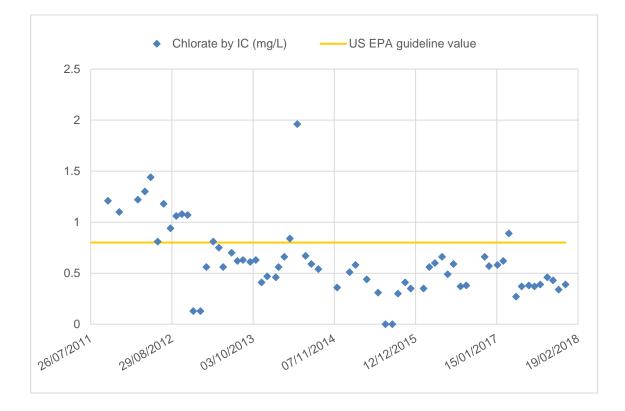
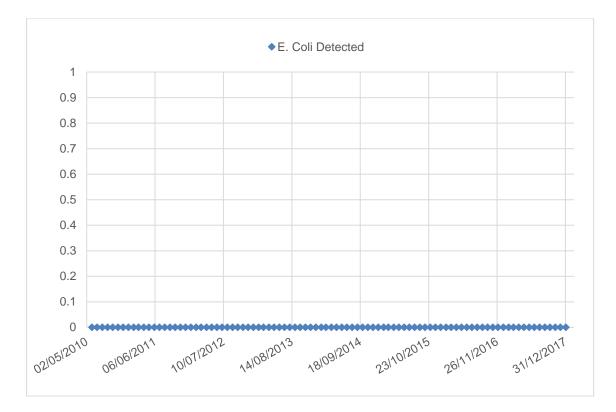



Figure 3.19 Alpha Treated – E Coli

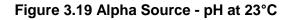


Table 3.3 Alpha Source Water

Alpha Water Supply		Start Date	29/10/1999		End Date:	11/08/2011					
Characteristic	Units	No. of			Summary of Result	S			Guide	line Value	
		Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedances
Conductivity	uS/cm	21	2150.000	1496.667	330.000	370.795	2000.000				
										≥6.5 & ≤	
pH at 23°C	mg/L as	22	8.100	7.080	6.300	0.379	7.776			8.5	1
Total Hardness	CaCO3	22	375.000	213.603	30.000	64.958	269.000			200	16
	mg/L as										
Temporary Hardness	CaCo3	21	225.000	156.190	30.000	47.614	225.000			200	3
Alkalinity	mg/L CaCo3	22	285.000	162.636	34.000	46.459	224.250				
Residual Alkalinity	meq/L	21	1.300	0.119	0.000	0.367	1.200				
Silica	mg/L	21	100.000	74.286	13.000	18.043	100.000			80	8
Total Dissolved Ions	mg/L	21	1320.000	896.905	230.000	234.211	1290.000				
Total Dissolved Solids	mg/L	22	1240.000	872.227	220.000	212.542	1203.500			600	20
True Colour	Hazen	22	14.000	2.750	0.000	3.916	12.750			15	0
Turbidity (NTU)	NTU	22	13.000	1.523	0.000	2.769	4.950			5	1
pH Sat		21	708.000	41.181	7.500	149.106	9.200				
Saturation Index		21	0.400	-0.738	-2.800	0.600	0.000				
Mole Ratio		21	4.900	3.510	2.500	0.482	4.100				
Sodium Absorpt. Ratio		21	9.900	6.614	4.400	1.066	8.000				
Figure of Merit Ratio		21	0.600	0.448	0.300	0.079	0.500				
Sodium	mg/L	21	340.000	220.048	55.000	56.304	295.000			180	18
Potassium	mg/L	21	13.000	9.452	4.300	1.911	12.500				
Calcium	mg/L	21	56.000	32.157	4.200	10.944	41.000				
Magnesium	mg/L	21	57.000	32.276	4.800	9.633	41.000				
Hydrogen	mg/L	21	0.000	0.000	0.000	0.000	0.000				
Bicarbonate	mg/L	21	350.000	196.643	41.500	58.100	275.000				
Carbonate	mg/L	21	1.800	0.290	0.000	0.391	0.900				
Hydroxide	mg/L	21	0.000	0.000	0.000	0.000	0.000				
Chloride	mg/L	21	530.000	337.214	40.500	88.393	400.000			250	18
Fluoride	mg/L	21	0.600	0.284	0.200	0.099	0.400	1.5	0		
Nitrate	mg/L	21	80.000	34.785	1.800	18.653	70.000	50	4		
Sulphate	mg/L	21	69.000	36.490	5.800	12.070	53.000	500	0	250	0
Iron	mg/L	23	0.040	0.012	0.002	0.012	0.040			0.3	0
Manganese	mg/L	23	0.030	0.013	0.000	0.007	0.029	0.5	0	0.1	0
Zinc	mg/L	22	0.190	0.032	0.005	0.037	0.056			3	0
Aluminium	mg/L	22	0.025	0.025	0.014	0.002	0.025			0.2	0

Alpha Water Supply	29/10/1999		End Date:	11/08/2011							
Characteristic Units No. of					Summary of Result	Guideline Value					
		Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedances
Boron	mg/L	22	0.700	0.289	0.140	0.118	0.439	4	0		
Copper	mg/L	22	0.025	0.019	0.002	0.006	0.025	2	0	1	0

Aesthetic Guideline Exceedance Health Guideline Exceedance

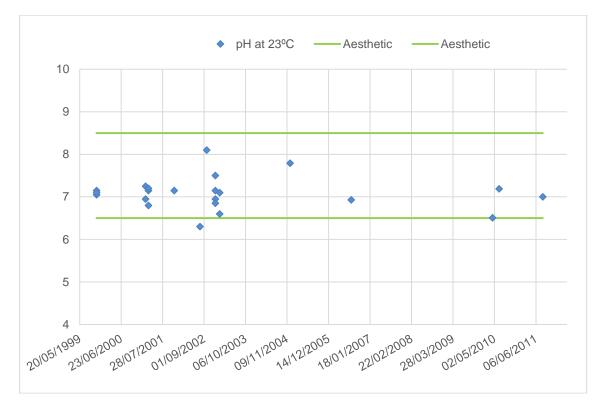
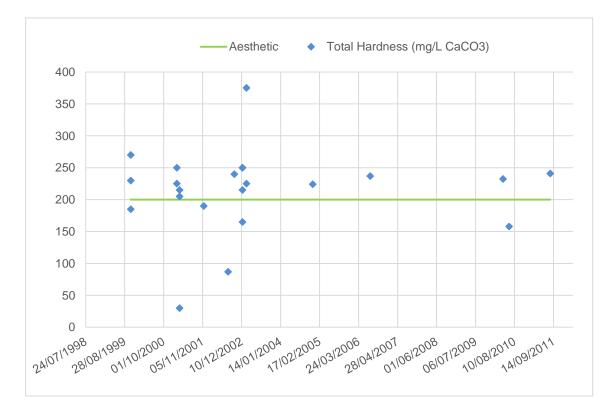
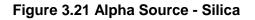




Figure 3.20 Alpha Source - Total Hardness

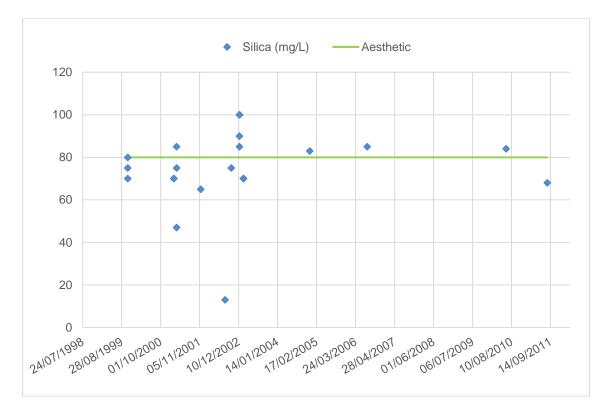
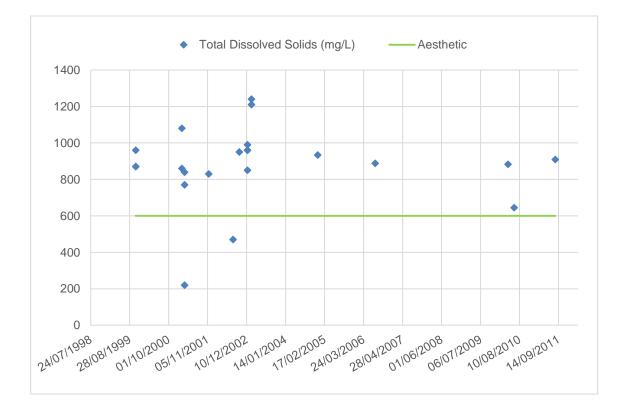



Figure 3.22 Alpha Source - Total Dissolved Solids

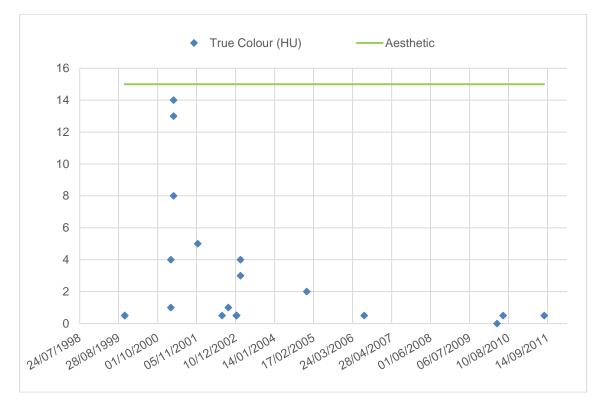
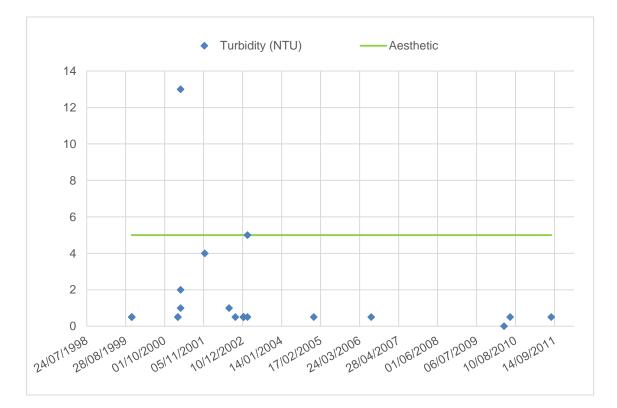



Figure 3.24 Alpha Source – Turbidity

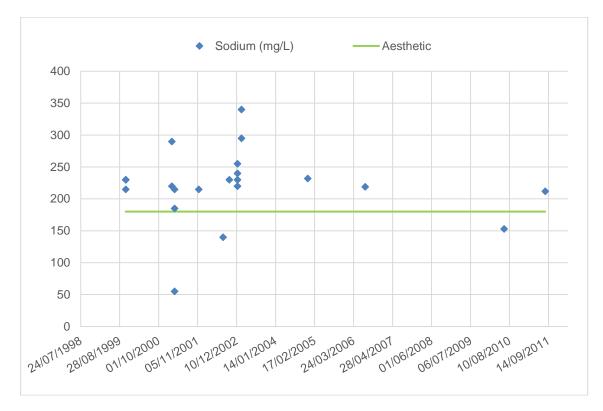
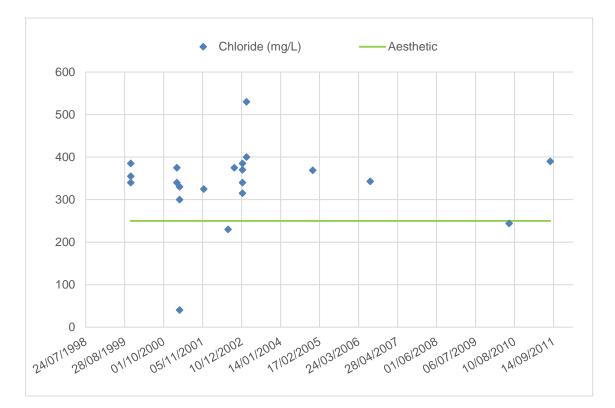
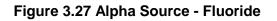




Figure 3.26 Alpha Source – Chloride

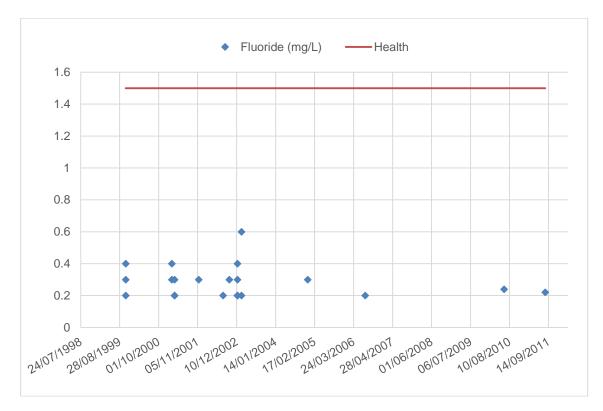
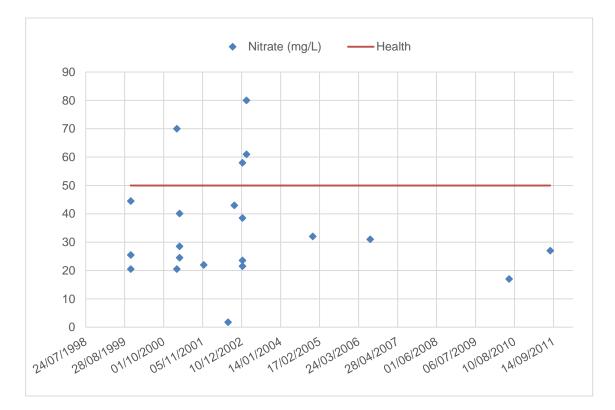



Figure 3.28 Alpha Source – Nitrate

May 2018

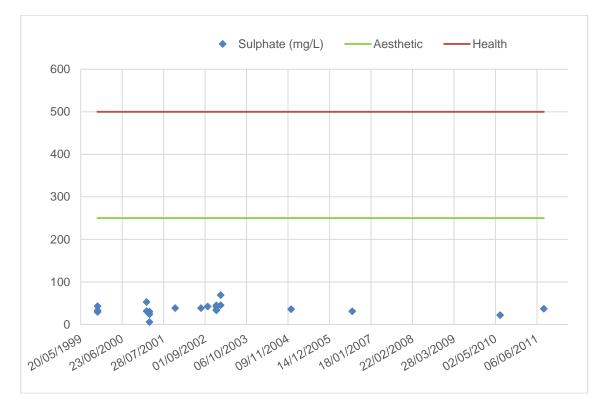
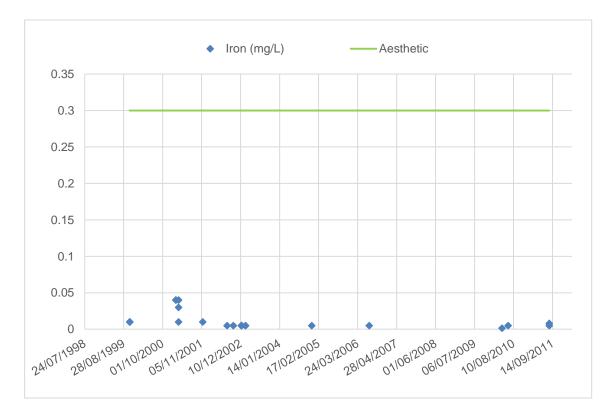
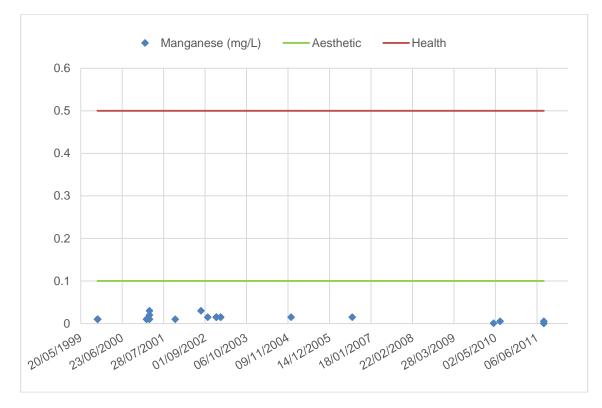
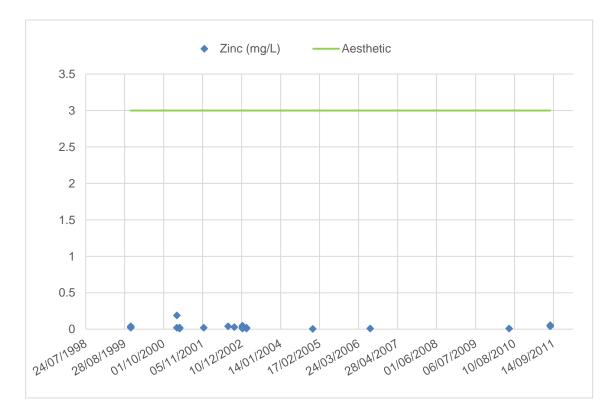
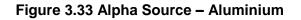
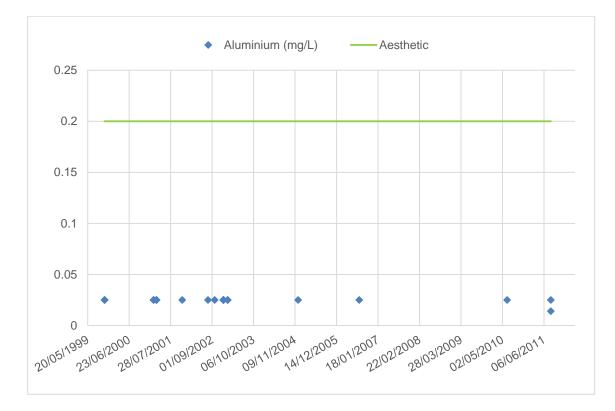
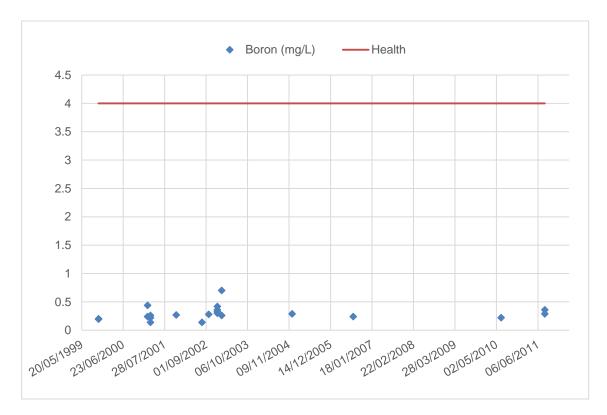
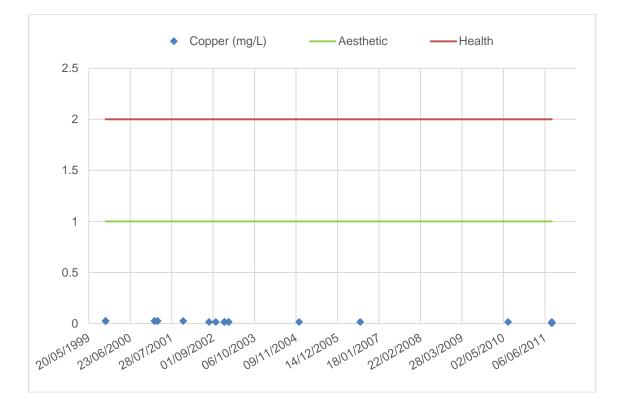



Figure 3.30 Alpha Source - Iron


Figure 3.32 Alpha Source – Zinc





3.1.1 (b) Interpretation

Table 3.1 above shows aesthetic guideline value exceedances³ for hardness, silica, total dissolved solids, colour, turbidity, sodium and chloride in the treated water.

The following aesthetic characteristics were detected (highlighted show exceedances):

- pH
- Hardness
- Silica
- Total Dissolved Solids
- Colour
- Turbidity
- Sodium
- Chloride
- Sulphate
- Aluminium

The following health characteristics were detected (highlighted shows exceedances):

- Fluoride
- Nitrate
- Sulphate
- Boron

Figure 3.2 provides a trend for the analysis of total hardness; there are seventy-three exceedances. A maximum value of 299mg/l, average value of 234.5mg/l and a 95th percentile value of 261.6mg/l have been determined. The aesthetic guideline value is 200 mg/l (as CaCO₃). For hardness no health based guideline value is considered necessary. The minority of the samples have a value (60 - 200mg/l) which would be regarded as a good quality drinking water. The remainder fall into increasing scaling problems (200 – 500 mg/l).

Figure 3.3 provides a trend for the analysis of silica; there are thirty-two exceedances. The aesthetic guideline value is 80 mg/l. For silica no health based guideline is considered necessary. A maximum value of 87 mg/l, average value of 74.6 mg/l and a 95th percentile of 84mg/l have been determined. Silica is an important characteristic for both aesthetics and treatment processes.

Figure 3.4 provides a trend for the analysis of total dissolved solids; there are eighty-seven exceedances. The aesthetic guideline value is 600 mg/l. For total dissolved solids no health based guideline value is considered necessary. A maximum value of 1,110mg/l, average value of 923.1mg/l and a 95th percentile of 1030mg/l have been determined. The minimum value of 458mg/l (<500mg/l) is regarded as a good quality drinking water based on taste, however this is the only sample that meets this criteria.

Figure 3.5 provides a trend for the analysis of true colour, there was one exceedance. The aesthetic guideline value is 15 HU. For total colour no health based guideline value is considered necessary, however it should be noted that if colour is high at the time of disinfection then the water should be checked for disinfection by products such as Trihalomethane (THM) which have been associated through epidemiological studies with some adverse health effects. A maximum value of 21 HU, average value of 1.4 HU and a 95th percentile of 5.6 HU have been determined. The majority of the samples have acceptable true colour (<15 HU). Up to 25 HU is acceptable were turbidity is low, while 15 HU is just noticeable in a glass.

³ As per the Australian Drinking Water Guidelines (2011)

Figure 3.6 provides a trend for the analysis of turbidity, there was one exceedance. The aesthetic guideline value is 5 NTU. For turbidity there is insufficient data to set a guideline value based on health considerations, however where water has a value greater than 1 NTU some microorganisms may be shielded from disinfection. A maximum value of 7 NTU, average value of 0.63 NTU and a 95th percentile of 1 NTU have been determined. The average and 95th percentile values (<5 NTU) have acceptable levels of turbidity, with seventeen samples meeting this criteria. Majority of the samples meet the lower criteria of <1 NTU allowing for effective disinfection. Only one sample exceeded the aesthetic guideline of 5 NTU with a value of 7 NTU.

Figure 3.7 provides a trend for the analysis of sodium; there are seventy-four exceedances. A maximum value of 272mg/l, average value of 231mg/l and a 95th percentile value of 268mg/l have been determined. The aesthetic guideline value is 180 mg/l. For sodium no health based guideline value is considered necessary. A minority of the samples analysed have a water quality which is acceptable based on a taste threshold (<180mg/l). The remainder are above the aesthetic guideline value.

Figure 3.8 provides a trend for the analysis of chloride for the treated water; there are eighty exceedances. A maximum value of 460mg/l, average value of 363mg/l and a 95th percentile value of 410mg/l have been determined. The aesthetic guideline value is 180mg/l. For chloride no health based guideline value is considered necessary. Minority of the samples analysed have a water quality acceptable based on a taste threshold (<250mg/l). The remainder are above the aesthetic guideline value. High concentrations of chloride are generally more common in groundwater.

There are seven aesthetic guideline value⁵ exceedances, and two health guideline value⁴ exceedance recorded during the period summarised in Table 3.1 for treated water.

Of the two-hundred and forty-one (241) samples analysed for E. coli there have been zero (0) E. coli colonies detected (Figure 3.18).

Table 3.3 above shows aesthetic guideline value exceedances⁵ for pH, hardness, silica, total dissolved solids, turbidity, sodium and chloride and health guideline value exceedances for nitrate in the source water. The aesthetic guideline values are not discussed here.

Chlorate is a by-product of chlorination. While there is currently insufficient data to set a healthrelated guideline value, the USA EPA value of 0.8mg/l has been adopted to determine health risks associated with concentrations present. Chlorate has been detected above the US EPA recommended value on 15 occasions since BRC commenced a program of monitoring for Chlorates. A maximum value of 1.96mg/l, average value of .62mg/l and a 95th percentile value of 1.2mg/l were determined.

Figure 3.28 provides a trend for the analysis of nitrate for the source water; there are 4 exceedances from twenty one samples. A maximum value of 80 mg/l, average value of 34.8 mg/l, a minimum value of 1.8mg/l and a 95th percentile of 70 mg/l have been recorded. The health guideline value is 50 mg/l. Nitrate occurs naturally and is increasing in some groundwater due to intensive farming and sewage effluent. The health guideline value will protect bottle-fed infants less than three months old from methaemoglobinaemia. Adults and children can safely drink water with up to 100 mg/l nitrate. While there is health exceedances measured, these have all been recorded prior to 2004. Data after 2004 however is limited as the DWSP generally only monitored the reticulated water supply. No exceedances of nitrates have been recorded in the reticulated water.

⁴ As per the USA EPA (based on Snap Shot Information Sheet)

⁵ As per the Australian Drinking Water Guidelines (2011)

3.1.2 Catchment Characteristics

Alpha creek forms part of the upper catchment of the Burdekin River system. The Alpha Creek system has a catchment area of approximately 2600 km² to Alpha. Considering the high absorption value of the natural soil within the sub-catchment, Alpha Creek will only run during periods of heavy rainfall. 70% of Alpha town is located on the floodplain of the creek. The remainder of the town is located on steeper terrain rising upwards to the west from the flood plain. Alpha is located on porous sandy loam natural soil underlain by varying subsoil clay and sandy clay strata. Generally the countryside is devoid of grass due to the low rainfall and reasonably high temperatures in the region. Alpha has a current population of 402 permanent residents and has a current demand of 0.238 Ml/day.

Alpha is located in the prominent Central Western Queensland beef and wool producing area. Whilst cattle and sheep grazing are the main industries, rail transport and road infrastructure construction and maintenance also contributes significantly to provide a stable employment base for the area. There is also a future prospect of mining in the Alpha suburban area. Tourism is also a significant industry within the town.

The average annual rainfall for Alpha is 497mm⁶. With the majority of the rain falling between late December and late March with little or no rainfall during any other period. The mean maximum temperature is 30.4°C⁶ although temperatures often exceed the 40°C mark during the summer months. The average annual pan evaporation for Alpha is approximately 2,800mm⁷.

The town of Alpha has been affected by several significant flood events over the past sixty years. The most severe event was April 1990 with an approximate maximum flood height of 10.26m recorded at the town gauge on the upstream side of the main railway line. This event resulted in inundation of a large proportion of the town and excavation of seventy per cent of the population. Other major events include the 1950, 1997, 2003 and 2011.

Currently there are five sub artesian water supply bores in Alpha. The five bores are located on Hopper Street, near the Stock Yard, Milton Street, Moore Street and the Alpha Aerodrome. The bores are ranging from 36 to 96m deep and yield 4.7, 4.6, 2.9, 2.4 and 7.6l/s respectively. Appendix B Figure M-2012-003 shows the bores and water treatment plant locations and water reticulation layout on an aerial photo of the town.

Access to all bores is limited to authorised personnel only by way of security fencing and all bore headworks are sealed against the possibility of deliberate contamination. The bore water quality does not comply with Australian Drinking Water Quality Guidelines and therefore requires treatment.

There are three potential water bearing formations in the Alpha area, the Colinlea Sandstone, the Alpha Creek Alluvium and the Tertiary Sediments. During test drilling the Colinlea Sandstone and the Alpha Creek Alluvium formations were ruled out as potential sources due to high infrastructure costs and limited water supplies respectively.

The tertiary formation is considerably older than the recent Alpha Creek Alluvium and consists of fine sands, sandstone, siltstone, claystone, and shales. The unconsolidated sediments in this formation are also "alluvial" in nature but these sediments were deposited by much older and larger fluvial systems than the present creeks in the area. Similar Tertiary Sediments are known to cover thousands of square kilometres in Central Queensland.

Groundwater is extracted from the fine sands and weathered sandstones in this formation. The yields and quality from the Tertiary Sediments in Central Queensland are known to be extremely variable and around the Alpha area the formation runs true to form. Supplies can vary from 0.5 to 12.0 l/s

⁶ 30 year mean at Barcaldine Post Office (nearest available climate statistics)

⁷ DPI Water Resource's Commission

and the quality from very good to saline. There are a number of small, possibly interconnected water beds in this formation and these may occur to depths as deep as 120m. The data indicates that these water beds occur as horizontal layers that extend both east/west and north/south of the town. The water beds are made up of very fine sands or weathered sandstone and each water bed can vary from less than 1m to 10m in thickness. In the town area there are at least three known, tertiary aquifers and it is likely that there is some interconnection between the top two. Data from bores outside town indicates that there are likely to be deeper aquifers, which contain saline water.

Alpha currently does not have a sewage collection or treatment system with sewage conveyed to individual septic tanks (with percolation). BRC are currently in the planning phase for the design of sewage collection and treatment system for the town. While the treated water supply shows no indication of contamination from the septic tanks, high concentrations of nitrates were detected in the source water before treatment of the supply commenced. It has been previously suspected that the high nitrates originated from septic systems and that they were located in the shallow Alpha creek Alluvium. (This water bed is only saturated on rare occasions so there are no nitrate analyses to support this theory.) The nitrates were thought to be migrating down the outside of the bore casing through the gravel pack material when pumping occurred. This has been used to explain the large fluctuations in nitrate levels experienced in the past. However it is thought unlikely to be caused by human or animal waste as indicator bacteria such as E-coli is not present. To this extent the cause of high nitrates in the water supply in the past is unknown. The sub artesian bores have been annuli sealed off to prevent contamination from surface water leachate. However during reasonably large flood events, contamination of the bore water with surface water may occur as flood waters may inundate private bores.

3.1.2 (a) Scale and Location of Significant Current and Proposed Major Land Uses (Mining)

At least four mines are proposed for the Barcaldine Region (Refer to Appendix F Existing Mining Leases and Exploration Areas) with three proponent EIS issued to date for above ground and underground coal mining activities. The total cumulative mining workforce including adjoining areas within the Barcaldine Regional Council jurisdiction in total predicted numbers is shown in Table 3.4 below.

Mining projects within Barcaldine Region	Predicted mining workforce
Kevin's Corner Coal Mine	1600
South Galilee	750
Alpha Coal	1600
Waratah Galilee Coal Mine (China First)	1500
Proposed Galilee Basin IGCC Power Station	60
Total Projected Cumulative Workforce	5510

Table 3.4 Cumulative Mining Workforce

This presents a total of 5510 operational personnel with a local resident population increase of 44 (Region wide) which excludes contractors, subcontractors or their families residing locally. The exact numbers of local resident workforce are subject to employee choice. There are no details on indirect partners or families to be housed locally. A workforce including a further 225 is expected during the operational phase of rail construction for Hancock Coal.

Based on information within EIS reporting from mining proponents for an operation period of 30 years (min) and average inflow/ ingress (provided this has been predicted by estimation) that between 220GL to 700GL per annum will be extracted. It has been predicted that current local water supply would be insufficient to support the mining expansion. However, it is not envisaged that Council will

supply this water from their town supplies and this would necessitate a reliance on alternative (piped) water for longer-term supply for mining proponents.

Should the mining projects within the Barcaldine Region proceed they may have the potential to significantly impact groundwater dependent systems / springs and reduce the quantity of surface water, and cause depressurisation of deeper aquifers based on EIS reporting to date. Radiating groundwater drawdowns are predicted from 10km to 30km away from mining activities however further information is required from the mining proponents on predicted impacts to the shallow aquifers in Alpha and Jericho which would include additional monitoring.

A draft figure of the existing mining leases and exploration areas are provided in Appendix F based on information as at April 2012, which provide a footprint for potential groundwater impact areas.

This plan would require amending if the planned mining projects proceed, to reflect the mining expansion for the region, when further detailed information from regulatory authorities, water providers and mining proponents becomes available.

3.1.3 Hazard Identification

The hazards and hazardous events and their sources that adversely affect water quality are documented in Table 3.5 below and include those affecting:

- Catchment
- Sourcing infrastructure
- Treatment plants (where applicable)
- Disinfection process(es) (where applicable)
- Distribution system

3.1.3 (a) Identifying and Documenting Hazards and Hazardous Events

The hazards and hazardous events were identified using data contained in the plan and following site visits and a risk assessment workshop which was conducted on 8 and 9 November 2011. A more recent risk assessment workshop was conducted in December 2017 prior to amendment of the plan;

- Section 2.1 Alpha Water Supply Scheme
- Section 3.1.1 Water Quality Information
- Section 3.1.2 Catchment Characteristics

55

-		
Table 3.5 Al	pha Hazard Identification,	, Risk Assessment and Uncertainty

Scheme Component / Sub-	Hazardous Event	Hazard	Мах	imum Risk		Existing Preventive Measures / Barriers.	R	esidual risk		Uncertainty	Comments/ Proposed Further Risk Reduction Actions
component			Consequence	Likelihood	Risk level	Damers.	Consequence	Likelihood	Risk level		KISK REDUCTION ACTIONS
	Septic system discharges	Bacteria	Catastrophic	Unlikely	High (10)	Disinfection Automated Chlorine monitoring Telemetry alarms for dosing failure	Moderate	Rare	Low (3)	Reliable	Continue to monitor for E.coli. AL1 : Draft standard operating procedures and / or manual of operations. AL2 Commence sampling source water in addition to treated water.
Source	Flood event	Biological	Catastrophic	Unlikely	Medium (6)	Disinfection/Treatment Automated, Turbidity and pH monitoring Telemetry alarms for critical level exceedance	Moderate	Rare	Low (3)	Uncertain	 AL3 Identify effect of flooding on bore water quality considering private bores which exist on the flood plain which may not be capped. AL 4 Identify uncapped bores under councils jurisdiction and cap bores to reduce risk of pathogenic ingress. AL1: Draft and implement procedure flood event monitoring of source water to detect bacterial contaminants.
		True Colour	Insignificant	Possible	Low (3)	flocculation, clarification and filtration	Insignificant	Rare	Low (1)	Reliable	
		Turbidity	Insignificant	Possible	Low (3)	flocculation, clarification and filtration	Insignificant	Unlikely	Low (2)	Reliable	
	Hazard that arises from	Hardness	Insignificant	Possible	Low (3)	Nil	Insignificant	Possible	Low (3)	Reliable	Acceptable risk, continue to monitor for exceedances.
	the natural geological processes in the aquifer.	TDS	Insignificant	Almost Certain	Medium (6)	Nil	Insignificant	Almost Certain	Medium (6)	Reliable	AL2 Commence testing source
		Sodium	Insignificant	Likely	Medium (5)	Nil	Insignificant	Likely	Medium (5)	Reliable	water in addition to treated water.
		Chloride	Insignificant	Likely	Medium (5)	Nil	Insignificant	Likely	Medium (5)	Reliable	
		Nitrates	Moderate	Unlikely	Medium (6)	Nil	Moderate	Unlikely	Medium (6)	Reliable	
	Power Outage	Disruption to supply	Moderate	Unlikely	Medium (6)	Elevated reservoir (limited backup) and Town Backup generator	Insignificant	Rare	Low (1)	Confident	Acceptable risk
Sourcing Infrastructure	Flood event	Loss of infrastructure	Catastrophic	Rare	Medium (6)	Critical Infrastructure constructed above flood level	Moderate	Rare	Low (3)	Uncertain	
	Maintenance and repair of raw water main	Bacteria	Catastrophic	Unlikely	High (10)	Mains repair procedure and treatment.	Moderate	Rare	Low (3)	Reliable	AL1 Draft procedure for reticulation repair. Current procedures are inadequate.
Treatment Plant & Reservoirs	Power Outage	Disruption to supply	Moderate	Unlikely	Medium (6)	Elevated reservoir (limited backup) and Town Backup generator	Insignificant	Rare	Low (1)	Confident	Acceptable risk

Scheme Component /			Ма	kimum Risk		Existing Preventive Measures /	R	esidual risk		Uncortainty	Comments/ Proposed Further
Sub- component	Hazardous Event	Hazard	Consequence	Likelihood	Risk level	Barriers.	Consequence	Likelihood	Risk level	Uncertainty	Risk Reduction Actions
	Flood event	Loss of infrastructure	Catastrophic	Rare	Medium (6)	Critical Infrastructure constructed above flood level	Moderate	Rare	Low (3)	Uncertain	
		True Colour	Insignificant	Possible	Low (3)		Insignificant	Rare	Low (1)	Reliable	AL1 : Draft and implement standard operating procedures and / or manual of operations.
	Bypass treatment plant	Turbidity	Insignificant	Possible	Low (3)	On-site drawings showing valve numbering, training and valve maintenance. Procedure for plant	Insignificant	Unlikely	Low (2)	Reliable	Current Procedures are inadequate and do not cover specific operations.
		Bacteria	Catastrophic	Unlikely	High (10)	operations, maintenance and backwash.	Moderate	Rare	Low (3)	Reliable	AL5 Operator requires training and handover process to be implemented.
	Alum under dose	True Colour	Insignificant	Possible	Low (3)	Operational monitoring, manual	Insignificant	Rare	Low (1)	Reliable	
	affecting treatment / Failure of Alum Dosing	Turbidity	Insignificant	Possible	Low (3)	adjustment. Automated, Turbidity and pH	Insignificant	Unlikely	Low (2)	Reliable	
	Equipment	Bacteria	Catastrophic	Unlikely	High (10)	monitoring Telemetry alarms for critical level exceedance	Moderate	Rare	Low (3)	Reliable	
	Alum over dosing	Alum	Moderate	Rare	Low (3)		Moderate	Rare	Low (3)	Uncertain	
	Hydrochloric over / under dosing	Hydrochloric Acid	Minor	Rare	Low (2)	Nil	Minor	Rare	Low (2)	Reliable	AL1 Draft standard operating procedures and / or manual of operations. Current Procedures
	Accidental Contamination	Substances (not identified)	Catastrophic	Rare	Medium (6)	Restricted access, operator training.	Moderate	Rare	Low (3)	Uncertain	are inadequate. AL5 Operator requires training and handover process to be
	Over Chlorination	Chlorine	Moderate	Unlikely	Medium (6)	Automated Chlorine monitoring	Moderate	Rare	Low (3)	Estimate	implemented.
	Under Chlorination	Bacteria	Catastrophic	Unlikely	High (10)	Telemetry alarms for dosing failure	Catastrophic	Rare	Medium (6)	Estimate	
	Low residual chlorine in Elevated Reservoir	Chlorine	Moderate	Unlikely	Medium (6)	Tank automatically refills at 70% full in order to turn water over	Moderate	Rare	Low (3)	Uncertain	
	Failure of Disinfectant Dosing Pumps	Bacteria	Catastrophic	Unlikely	High (10)	Automated Chlorine monitoring Telemetry alarms for dosing failure	Catastrophic	Rare	Medium (6)	Estimate	
Disinfection Process	Power Outage	Disruption to supply	Moderate	Unlikely	Medium (6)	Elevated reservoir (limited backup) and Town Backup generator	Insignificant	Rare	Low (1)	Confident	Acceptable risk
	Disinfection by-products (Degradation of chemicals)	Chlorate	Major	Possible	High (12)	Installation of calcium hypochlorite system Verification monitoring of Chlorates Automated chlorine monitoring	Major	Unlikely	Medium (6)	Estimate	AL1 Draft standard operating procedures and / or operations manual.
	pH >8	Chlorine	Moderate	Unlikely	Medium (6)	Automated pH, Chlorine monitoring Telemetry alarms for dosing failure	Moderate	Unlikely	Medium (6)	Estimate	AL1 Current Procedures are inadequate. Draft standard operating procedures and / or operations manual.

Scheme Component / Sub- Hazardous Event		Maximum Risk Hazard			Existing Preventive Measures / Barriers.	R	esidual risk		Uncertainty	Comments/ Proposed Further Risk Reduction Actions	
component			Consequence	Likelihood	Risk level		Consequence	Likelihood	Risk level		
	Insufficient contact time	Chlorine	Moderate	Unlikely	Medium (6)		Moderate	Rare	Low (3)	Estimate	Acceptable risk
Distribution System	Reticulation maintenance and repair	Bacteria	Catastrophic	Unlikely	High (10)	Mains repair procedure and Monitoring	Moderate	Rare	Low (3)	Uncertain	AL1 Draft revised procedure for reticulation repair and monitor
Whole of system	Flights carrying samples to lab delayed/cancelled	Logistical	Insignificant	Possible	Low (3)	Nil	Insignificant	Possible	Low (3)	Confident	Acceptable risk

3.1.3 (b) Hazard Identification (And Risk Assessment) Team

The personnel responsible for the hazard identification and risk assessment process, their roles and responsibilities are detailed in the Table below.

Typical job title for key personnel	What role did each person play on the team?	What expertise and system knowledge did the person bring?
Manager of Engineering Services	Management of DWQMP Process, Risk Assessment Procedure & Chairing Risk Assessment Workshop	High level knowledge, risk assessment and general engineering experience in the management of the systems
Engineer (Internal / External)	Author, Risk Assessment, Risk Assessment Workshop	Detailed knowledge of the system, water risk assessment
Water Engineer (Internal / External)	Risk Assessment Workshop	Detailed knowledge of drinking water quality management, outside perspective, risk assessment
Water / Technical Officers	Risk Assessment Workshop	Detailed knowledge of individual schemes, risk assessment

Table 3.6 Hazard Identification and Risk Assessment Team

3.2 Aramac Water Quality and Catchment Characteristics

Aramac water supply is composed of two flowing artesian bores. The source water is not treated prior to reticulation.

3.2.1 Water Quality Information

Water quality information for Aramac includes the following:

- (a) Summary
- (b) Interpolation

3.2.1 (a) Summary

Table 3.7 below summarises the available reticulated water quality for the Aramac water supply scheme.

Figure 3.36 to Figure 3.53 below show trends of the main parameters contained in Table 3.7.

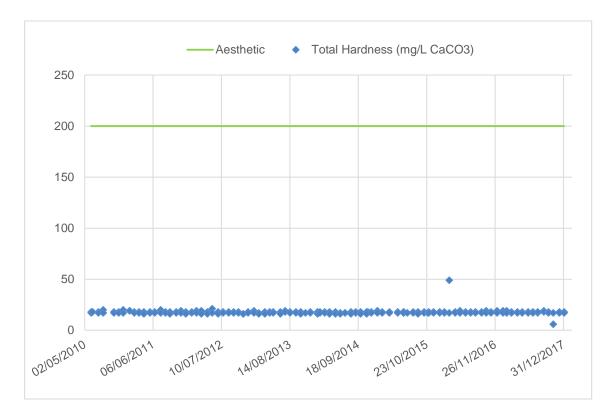
The responsibility for obtaining the water samples rests with the DWSP and samples are collected by the Technical Officer monthly. Samples are sent to Queensland Health Scientific Services for analysis. The DWSP also samples and analyses drinking water for E. coli.

Table 3.7 Aramac Reticulated Water

Aramac Water Supply	Start D	Date	09/06/2010	End	Date:	03/01/2018					
		No. of		Sur	nmary of Re	sults			Guidel	ine Value	
Characteristic	Units	Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedances
Conductivity	uS/cm	184	488.000	461.511	443.000	9.584	478.850				
рН		184	8.340	7.942	7.630	0.100	8.090			≥6.5 & ≤ 8.5	0
Total Hardness	mg/L as CaCO₃	184	49.000	17.614	5.900	2.625	19.000			200	0
Temporary Hardness	mg/L as CaCo₃	184	21.000	17.451	5.900	1.233	19.000			200	0
Alkalinity	mg/L CaCo₃	184	186.000	152.082	2.900	52.174	177.000				
Residual Alkalinity	meq/L	184	183.000	21.585	2.900	53.094	173.700				
Silica	mg/L	184	29.000	19.690	18.000	0.870	20.000			80	0
Total Dissolved Ions	mg/L	184	3968.000	372.957	256.000	266.037	368.850				
Total Dissolved Solids	mg/L	184	285.000	269.446	259.000	5.038	277.850			600	0
True Colour	Hazen	170	17.000	3.559	0.500	3.062	9.550			15	2
Turbidity	NTU	112	2.000	0.571	0.500	0.210	1.000			5	0
pH (Saturation)*		184	8.900	8.402	8.300	0.047	8.400				
Saturation Index		184	-0.100	-0.463	-1.000	0.116	-0.300				
Mole Ratio		184	2.100	1.817	1.400	0.105	2.000				
Sodium Absorption Ratio		184	18.000	9.704	8.600	0.717	10.000				
Figure of Merit		176	0.100	0.099	0.000	0.008	0.100				
Sodium	mg/L	184	102.000	93.223	88.000	2.456	97.000			180	0
Potassium	mg/L	184	8.300	6.072	5.700	0.236	6.385				
Calcium	mg/L	184	7.300	6.516	2.000	0.449	7.000				
Magnesium	mg/L	184	0.700	0.312	0.200	0.061	0.400				
Hydrogen	mg/L	176	0.000	0.000	0.000	0.000	0.000				
Bicarbonate	mg/L	184	224.000	204.823	2.400	15.887	216.850				
Carbonate	mg/L	184	2.500	1.075	0.100	0.282	1.585				
Hydroxide	mg/L	184	0.000	0.000	0.000	0.000	0.000				
Chloride	mg/L	184	48.000	40.658	33.000	1.082	42.000			250	0
Fluoride	mg/L	184	0.600	0.497	0.230	0.041	0.559	1.5	0		
Nitrate	mg/L	106	0.250	0.225	0.025	0.070	0.250	50	0		

Aramac Water Supply	Start [Date	09/06/2010	End	Date:	03/01/2018					
		No. of		Sur	nmary of Re	sults			Guidel	ine Value	
Characteristic	Units	Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedances
Sulphate	mg/L	98	0.500	0.500	0.500	0.000	0.500	500	0	250	0
Iron	mg/L	184	0.360	0.118	0.005	0.066	0.239			0.3	5
Manganese	mg/L	184	0.070	0.030	0.005	0.005	0.040	0.5	0	0.1	0
Zinc	mg/L	119	0.330	0.018	0.005	0.039	0.071			3	0
Aluminium	mg/L	106	0.025	0.025	0.025	0.000	0.025			0.2	0
Boron	mg/L	184	0.090	0.060	0.050	0.006	0.070	4	0		
Copper	mg/L	99	0.080	0.016	0.015	0.008	0.016	2	0	1	0
E. coli		399	0.000	0.000	0.000	0.000	0.000	0	0		

Aesthetic Guideline Exceedance Health Guideline Exceedance


Table 3.8 Aramac water quality complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
2017	2	8.58	Smell	Pipes / reservoir contaminated	Decontaminate reticulation
2016	0	0			
2015	No Data	No Data		Data Not Available	
2014					
2013					
2012					
2011	6	25.75			
2010	6	25.87			
2009	6	25.98			

Figure 3.38 Aramac – Silica

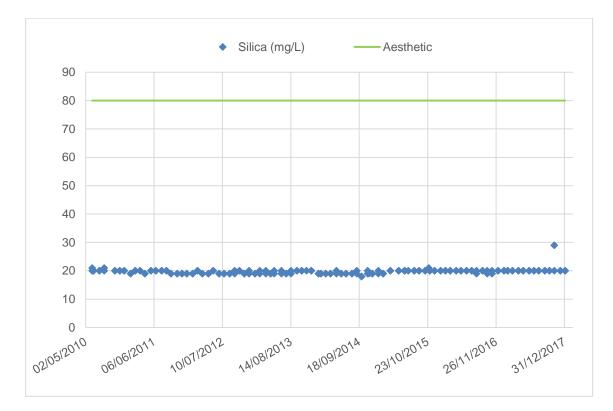
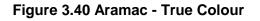



Figure 3.39 Aramac - Total Dissolved Solids

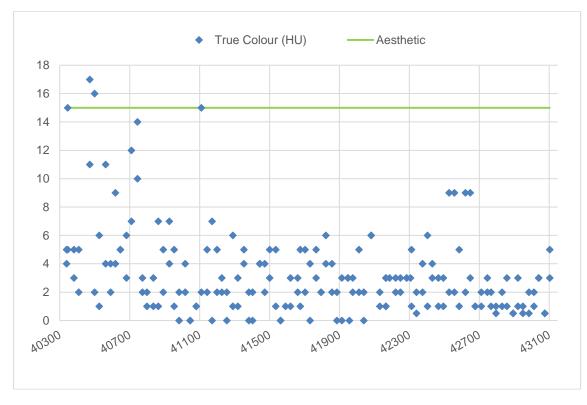
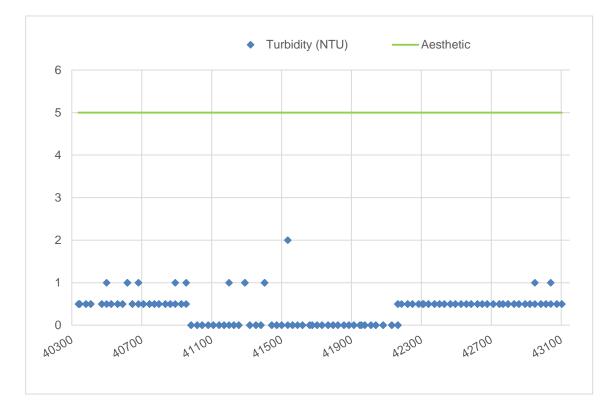



Figure 3.41 Aramac – Turbidity

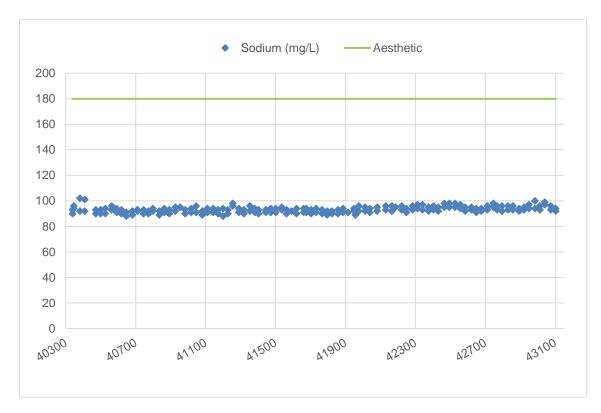
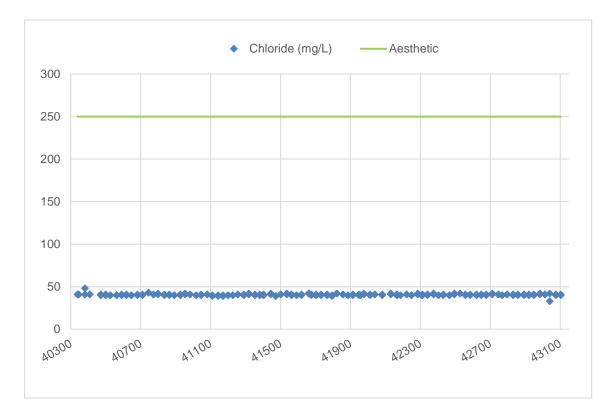
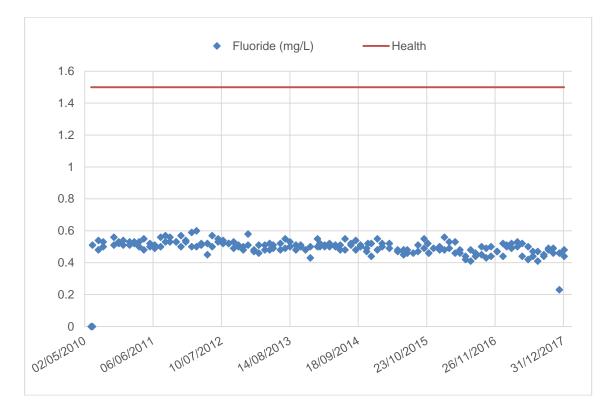
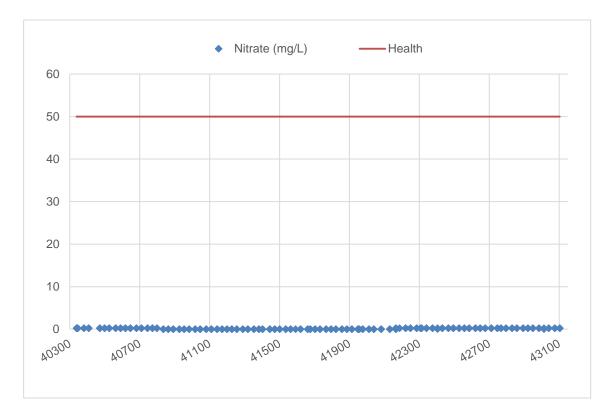
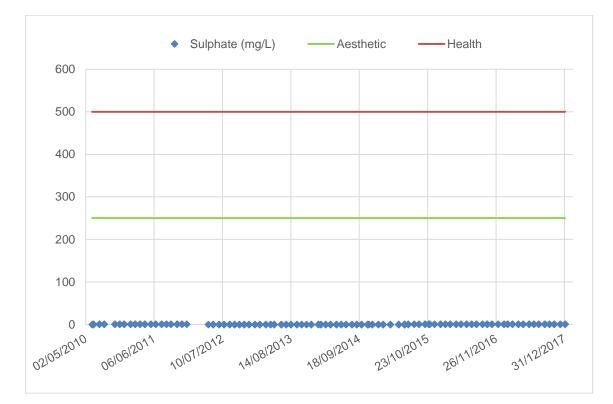
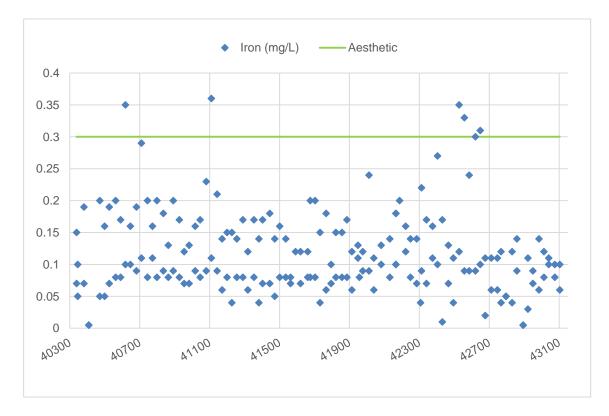



Figure 3.43 Aramac – Chloride


Figure 3.45 Aramac - Nitrate

68

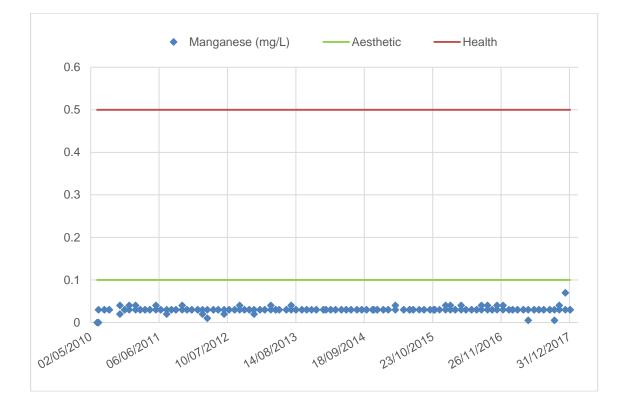
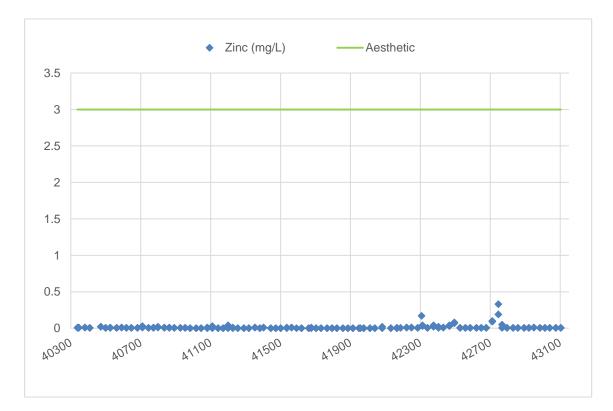



Figure 3.49 Aramac - Zinc

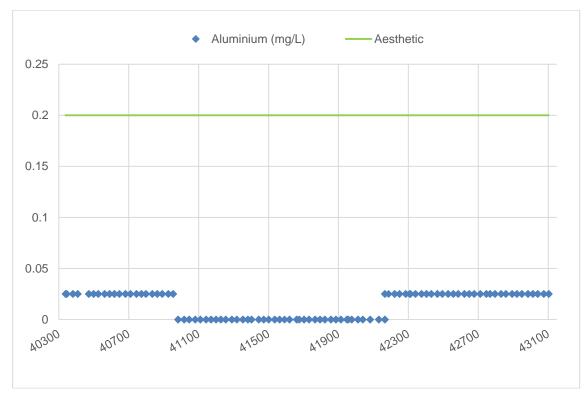
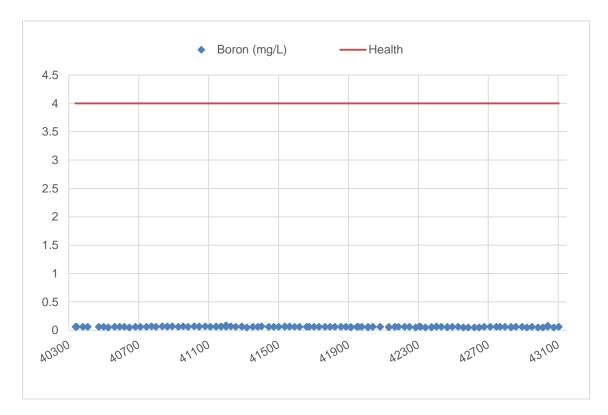



Figure 3.51 Aramac – Boron

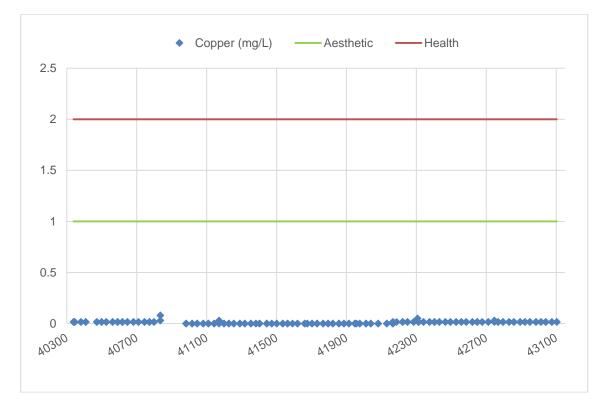
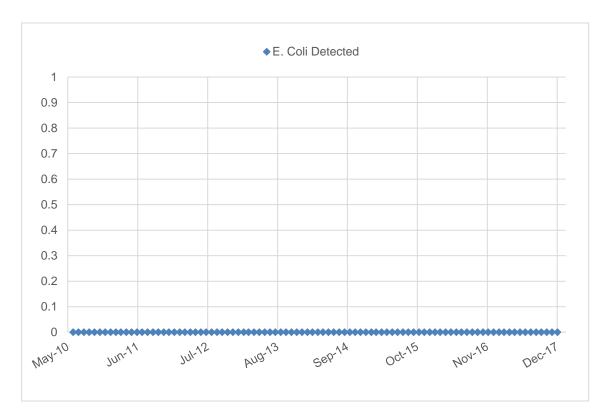



Figure 3.53 Aramac - E. Coli

3.2.1 (b) Interpretation

Table 3.7 above shows aesthetic guideline value exceedances⁸ for true colour and iron.

The following aesthetic characteristics were detected (highlighted show exceedances):

- pH
- Hardness
- Silica
- Total Dissolved Solids
- Colour
- Turbidity
- Sodium
- Chloride
- Iron
- Manganese

The following health characteristics were detected (highlighted shows exceedances):

- Fluoride
- Manganese

Figure 3.40 provides a trend for the analysis of true colour, there were two exceedances. The aesthetic guideline value is 15 HU. For true colour no health based guideline value is considered necessary. A maximum value of 17 HU, average value of 3.6 HU and a 95th percentile of 9.55 HU has been determined. Up to 25 HU is acceptable were turbidity is low, while 15 HU is just noticeable in a glass.

Figure 3.47 provides a trend for the analysis of iron; there was five exceedances. A maximum value of 0.36mg/l, average value of 0.118 mg/l and a 95th percentile value of 0.239mg/l have been determined. The aesthetic guideline value is 0.3mg/l. For iron there is insufficient data to set a guideline value based on health considerations. Iron occurs naturally in water, < 1mg/l but up to 100mg/l in oxygen depleted groundwater. The taste threshold is 0.3mg/l. High concentrations of iron may stain laundry and fittings with iron bacteria causing blockages, taste / odour and corrosion. Iron bacteria, historically, has not been a problem for this water supply.

While there were aesthetic guideline value exceedances, there were no health guideline value⁸ exceedances recorded during the period summarised in Table 3.7.

Of three-hundred and ninety-nine (399) samples analysed for E. coli there have been zero E. coli colonies detected (see Figure 3.53).

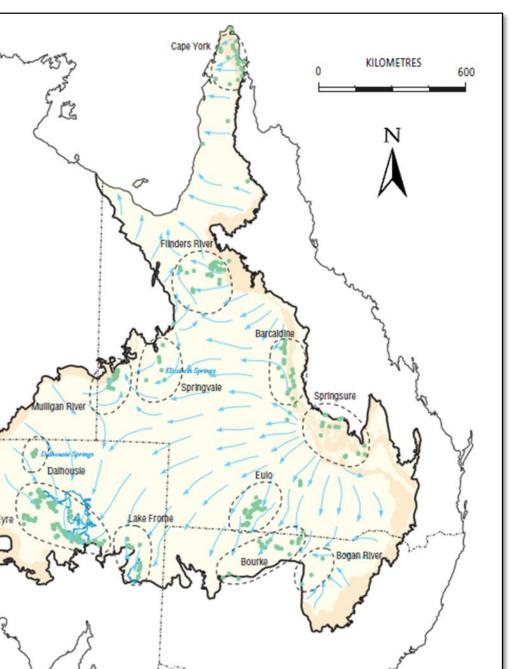
⁸ As per the Australian Drinking Water Guidelines (2004)

3.2.2 Catchment Characteristics

Aramac is located 67 km north of Barcaldine on the northern side of the Aramac Creek in the Thompson River catchment. Aramac Creek runs into the Thompson River midway between Longreach and Muttaburra. Aramac is located on gently undulating black soil terrain.

The average annual rainfall for Aramac is 497mm⁹. With the majority of the rain falling between late December and late March with little or no rainfall during any other period. The mean maximum temperature is $30.4^{\circ}C^{9}$ although temperatures often exceed the $40^{\circ}C$ mark during the summer months. The average annual pan evaporation for Aramac is approximately 2,800mm¹⁰. Aramac has a current population of 299 permanent residents and has a current demand of 0.73 Ml/day. The town and water supply infrastructure is not prone to flooding.

Aramac is located in the prominent Central Western Queensland beef and wool producing area. Whilst cattle and sheep grazing are the main industries, road infrastructure construction and maintenance also contributes significantly to provide a stable employment base for the area. Tourism is also a significant industry within the town with attractions such as the Aramac Tramway Museum, Grey Rock (Cobb & Co. staging area), Lake Dunn and Lake Galilee. Tourism numbers can sometimes place major demand on the town's reticulation system.


The Great Artesian Basin (GAB) covers approximately one-fifth of the Australian continent and contains 8.7 x 10⁶ GL of groundwater in the Jurassic sandstone aquifers. It is the largest groundwater and artesian basin in the world. The basin is located under mostly arid and semi-arid landscapes to the west of the Great Dividing Range. The GAB supports a wide array of activities such as pastoral, agriculture and mining as well as the rural communities, cultural and tourism activities. In the Barcaldine area the capping of existing free flowing aquifers has improved the pressure in the main town aquifers. The GAB is recharged by rainfall and stream flow infiltrating into the exposed sandstone on the edges of the basin. One of the first drilling locations of the GAB occurred in 1887 in Barcaldine, comprising of a free flowing artesian Bore.

Currently there are two bores in Aramac. Bore No 1 (RN 7121) and Bore No 2 (RN 51753). Figure 3.54 shows the recharge, discharge and flow of the GAB and Barcaldine's relative location in relation to the GAB. The town bores 1 and 2 are located on the eastern and western ends of Kerr Street. Bores 1 and 2 are 366m and 362m deep respectively. The bores currently yield 22.7 I/s and 29.1 I/s respectively. Bore No. 1 is free flowing, while Bore No. 2 is pumped. Bore 1 was drilled in 1933 and Bore No. 2 was drilled in 1983. All bore headworks are sealed against the possibility of deliberate contamination. Appendix B Figure M-2012-004 shows the bore locations and water reticulation layout on an aerial photo of the town. Appendix C contains a copy of the bore card reports obtained from Department of Environmental & Resource Management.

Aramac sewerage collection scheme is comprised of a conventional gravity mains collection system with pumped rising main to a trickling filter treatment plant. The treatment plant is comprised of one imhoff tank, one trickling filter, four effluent holding lagoons, sludge drying beds and an evaporation pond. Effluent from the ponds is discharged to a drain at Aramac Creek where it generally evaporates before it reaches the creek. Sludge's are captured, dried and disposed of separately. The ground water sources show no indication of contamination from the sewage treatment plant. The artesian bores have been annuli sealed off to prevent contamination from surface water leachate. Currently effluent is not reused however this may be reviewed in the future.

 ⁹ 30 year mean at Barcaldine Post Office (nearest available climate statistics)
 ¹⁰ DPI Water Resource's Commission

¹⁰ DPI Water Resource's Commission

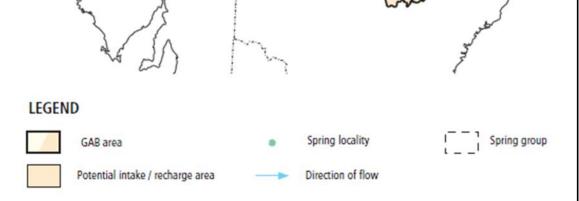


Figure 3.54 GAB Recharge, Discharge and Flow¹¹

¹¹ Great Artesian Basin, Resource Study Summary, Great Artesian Basin Consultative Council

3.2.3 Hazard Identification

The hazards and hazardous events and their sources that adversely affect water quality are documented in Table 3.22 below and include those affecting:

- Catchment
- Sourcing infrastructure
- Treatment plants (where applicable)
- Disinfection process(es) (where applicable)
- Distribution system

3.2.3 (a) Identifying and documenting hazards and hazardous events

The hazards and hazardous events were identified using data contained in the plan and following site visits and a risk assessment workshop which was conducted on 8 and 9 November 2011. A more recent risk assessment workshop was conducted in December 2017 prior to amendment of the plan;

- Section 2.2 Aramac Water Supply Scheme
- Section 3.2.1 Water quality information
- Section 3.2.2 Catchment Characteristics

Table 3.9 Aramac Hazard Identification,	Risk Assessment and Uncertainty
---	---------------------------------

Scheme			Maximum Risk			Existing Preventive	Residual risk				Comments/ Proposed	
Component / Sub-	Hazardous Event	Hazard				Measures / Barriers.				Uncertainty	Further Risk Reduction Actions	
component			Consequence	Likelihood	Risk level		Consequence	Likelihood	Risk level		ACTIONS	
	Sewage system discharges, agricultural run-off	Bacteria	Moderate	Rare	Low (3)	Nil	Moderate	Rare	Low (3)	Reliable		
Bore	Hazard that arises from the natural geological processes in	Iron	Insignificant	Rare	Low (1)	Nil	Insignificant	Rare	Low (1)	Reliable	Acceptable risk, continue to monitor for exceedances	
	the aquifer	True Colour	Insignificant	Rare	Low (1)	Nil	Insignificant	Rare	Low (1)	Reliable		
Sourcing	High demand during peak tourism	Low pressure	Moderate	Rare	Low (3)	Nil	Moderate	Rare	Low (3)	Reliable	Acceptable risk	
Infrastructure	Accidental or intentional contamination	Harmful substances (not identified)	Catastrophic	Unlikely	High (10)	Restricted access to bore sites	Catastrophic	Rare	Medium (6)	Uncertain	Acceptable risk	
Treatment Plant					F	Reticulated Water Untreated						
Disinfection Process					Ret	iculated Water Not Disinfected						
	Reticulation maintenance and repair	Bacteria	Moderate	Rare	Low (3)	Mains repair procedure and Monitoring	Moderate	Rare	Low (3)	Uncertain	ABM1 Operational & Maintenance Procedures	
Distribution System	Expired Mains	Bacteria	Catastrophic	Unlikely	High (10)	Mains replacement priority layout plan to replace expired mains.	Catastrophic	Unlikely	High (10)	Uncertain	ABM2 Replace ageing mains in accordance with asset replacement program. Continue to apply for internal & external funding.	
	Dead ends	Bacteria	Catastrophic	Unlikely	High (10)	Routine flushing	Catastrophic	Rare	Medium (6)	Uncertain	ABM3 Create flushing schematic layout to go with the SOP Air scouring every 5 years. Mains replacement including reconfiguration of layout to improve flow.	
Whole of System	Flights carrying samples to lab delayed/cancelled	Logistical	Insignificant	Possible	Low (3)	Nil	Insignificant	Possible	Low (3)	Confident	Acceptable risk	

3.2.3 (b) Hazard Identification (and Risk Assessment) Team

The personnel responsible for the hazard identification and risk assessment process, their roles and responsibilities are detailed in the Table below.

Typical Job Title for Key Personnel	What Role Did Each Person Play On the Team?	What Expertise and System Knowledge Did the Person Bring?
Manager of Engineering Services	Management of DWQMP Process, Risk Assessment Procedure & Chairing Risk Assessment Workshop	High level knowledge, risk assessment and identification, general engineering experience in the management of the systems
Engineer (Internal / External)	Author, Risk Assessment, Risk Assessment Workshop	Detailed knowledge of the system, water risk assessment and identification
Water Engineer (Internal / External)	Risk Assessment Workshop	Detailed knowledge of drinking water quality management, outside perspective, risk assessment and identification
Water / Technical Officers	Risk Assessment Workshop	Detailed knowledge of individual schemes, risk identification

Table 3.10 Hazard Identification and Risk Assessment Team

3.3 Barcaldine Water Quality and Catchment Characteristics

Barcaldine water supply is composed of two sub artesian bores. Pomona and Acacia Street bores are pumped into a ground level reservoir and then pumped directly into reticulation. The Acacia Street bore may bypass the ground level reservoir and pump directly into reticulation if required. The source water is not treated prior to reticulation.

3.3.1 Water quality information

Water quality information for Barcaldine includes the following:

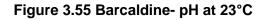
- (a) Summary
- (b) Interpolation

3.3.1 (a) Summary

Table 3.11 below summarises the available reticulated water quality for the Barcaldine water supply scheme.

Figure 3.55 to Figure 3.72 below show trends of the main parameters contained in Table 3.11. The responsibility for obtaining the water samples rests with the DWSP and samples are collected by the Water Officer fortnightly. Samples are sent to Queensland Health Scientific Services for analysis. The DWSP also samples and analyses drinking water for E. coli.

Table 3.11 Barcaldine Reticulated Water


Barcaldine Water Supply		Start Date	15/06/1998		End Date:	03/01/2018					
Characteristic	Units	No. of	Summary of	Results				Guidelin	ne Value		
		Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedances
Conductivity	uS/cm	420	710.000	406.393	355.000	47.858	437.000				
рН		420	8.810	8.316	7.960	0.129	8.480			≥6.5 & ≤ 8.5	15
Total Hardness	mg/L as CaCO3	420	312.000	11.237	4.800	14.952	16.000			200	1
Temporary Hardness	mg/L as CaCo₃	420	19.500	10.523	4.800	2.768	15.525			200	0
Alkalinity	mg/L CaCo₃	420	270.000	121.834	2.400	51.571	151.000				
Residual Alkalinity	meq/L	420	146.000	22.109	2.400	47.761	139.050				
Silica	mg/L	420	26.000	22.945	2.300	1.863	24.000			80	0
Total Dissolved Ions	mg/L	420	560.000	302.420	3.100	50.309	330.100				
Total Dissolved Solids	mg/L	420	430.000	242.583	32.000	31.237	263.150			600	0
True Colour	Hazen	419	33.000	2.179	<0.1	3.562	7.000			15	5
Turbidity	NTU	420	250.000	1.594	<0.1	13.819	1.000			5	6
pH (Saturation)*		420	9.300	8.728	8.200	0.133	8.900				
Saturation Index		420	0.300	-0.412	-1.100	0.158	-0.100				
Mole Ratio		420	1.900	1.505	1.000	0.143	1.700				
Sodium Absorption Ratio		420	163.000	11.992	8.600	7.580	14.000				
Figure of Merit		420	0.100	0.053	0.000	0.050	0.100				
Sodium	mg/L	420	160.000	85.386	78.000	11.550	92.000			180	0
Potassium	mg/L	420	3.800	2.706	1.600	0.749	3.600				
Calcium	mg/L	420	6.700	3.881	1.800	0.946	5.600				
Magnesium	mg/L	419	0.900	0.214	0.010	0.135	0.400				
Hydrogen	mg/L	420	6.400	0.015	0.000	0.312	0.000				
Bicarbonate	mg/L	420	320.000	167.505	153.000	22.371	181.000				
Carbonate	mg/L	420	6.200	2.146	0.900	0.721	3.205				
Hydroxide	mg/L	420	0.100	0.006	0.000	0.024	0.100				
Chloride	mg/L	420	73.000	38.535	0.600	5.365	42.050			250	0
Fluoride	mg/L	418	1.230	0.246	0.020	0.111	0.300	1.5	0		
Nitrate	mg/L	420	3.100	0.363	<0.5	0.237	0.600	50	0		
Sulphate	mg/L	420	14.500	4.519	0.500	1.170	5.700	500	0	250	0
Iron	mg/L	419	1.300	0.049	< 0.01	0.085	0.100			0.3	8
Manganese	mg/L	419	0.100	0.016	<0.01	0.012	0.030	0.5	0	0.1	0
Zinc	mg/L	420	20.000	0.061	< 0.01	0.975	0.030			3	1
Aluminium	mg/L	419	0.060	0.025	< 0.05	0.003	0.025			0.2	0

Barcaldine Water Supply		Start Date	15/06/1998		End Date:	03/01/2018					
Characteristic	Units	No. of	Summary of	f Results				Guidelin	ne Value		
		Samples	Maximum	Average	Minimum	Std Dev	95 th	Health	Exceedances	Aesthetic	Exceedances
			Value	Value	Value		Percentile				
Boron	mg/L	420	0.500	0.049	< 0.02	0.072	0.101	4	0		
Copper	mg/L	420	0.080	0.016	< 0.03	0.007	0.025	2	0	1	0
E. coli		992	0.000	0.000	0.000	0.000	0.000	0	0		

Aesthetic Guideline	
Exceedance	
Health Guideline	
Exceedance	

Table 3.12 Water quality complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
2018	2	2.4	Colour	Pipes / reservoir needing scouring	Scour reservoir
2017	5	5.9	Colour	Pipes / reservoir needing scouring	Scour reservoir
2016	7	8.3	Colour, Turbidity	Pipes / reservoir needing scouring	Scour reservoir
2015					
2014					
2013			No D	ata	
2012					
2011	6	7.1	Colour	Pipes / reservoir needing scouring	Scour reservoir
2010	9	10.7	Colour	Pipes / reservoir needing scouring	Scour reservoir
2009	16	19.0	Colour	Pipes / reservoir needing scouring	Scour reservoir

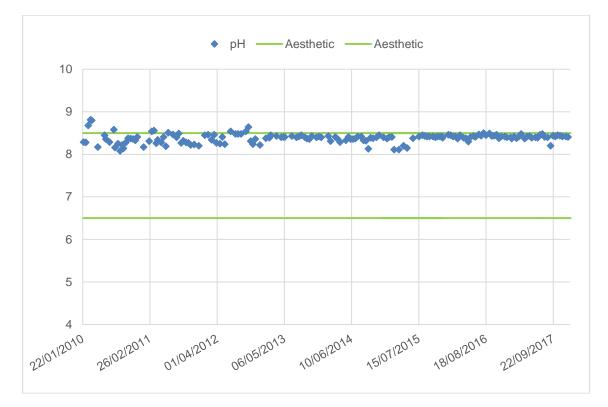
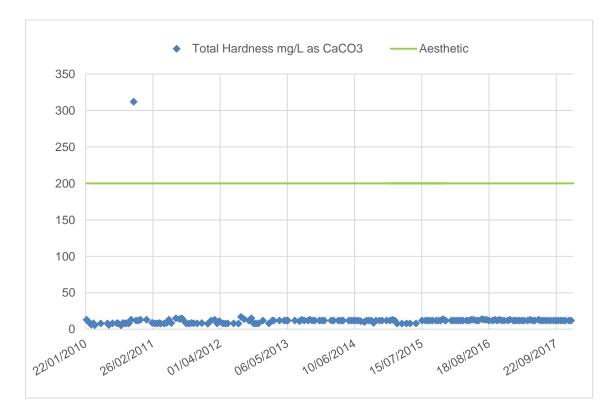
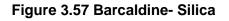




Figure 3.56 Barcaldine- Total Hardness

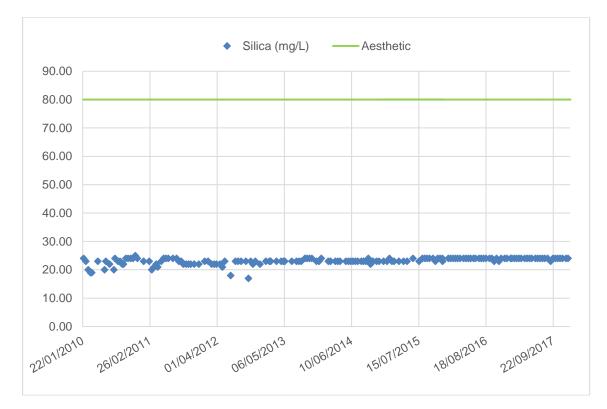
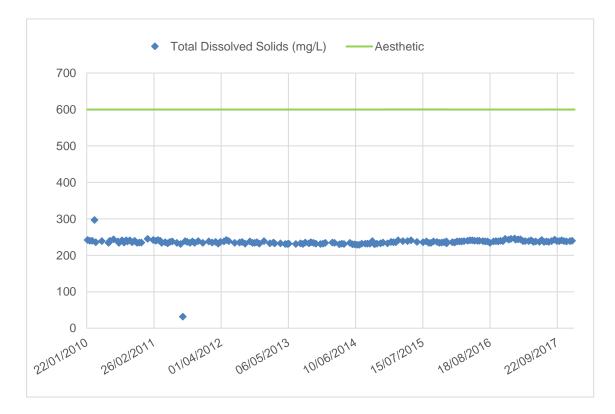
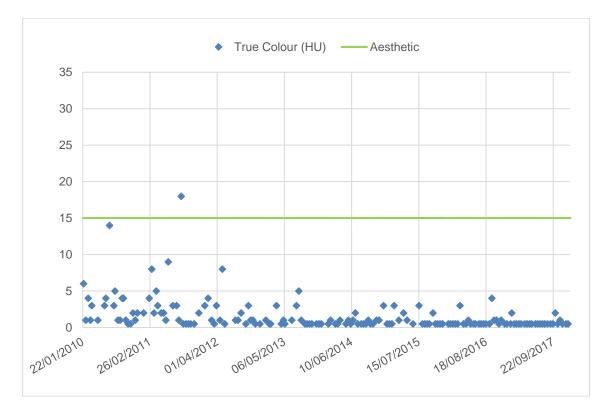
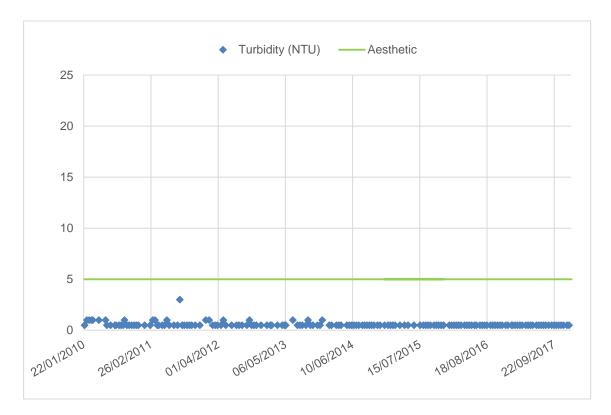
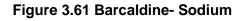
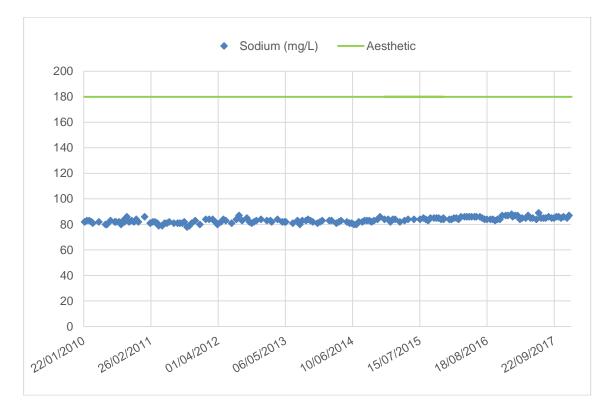
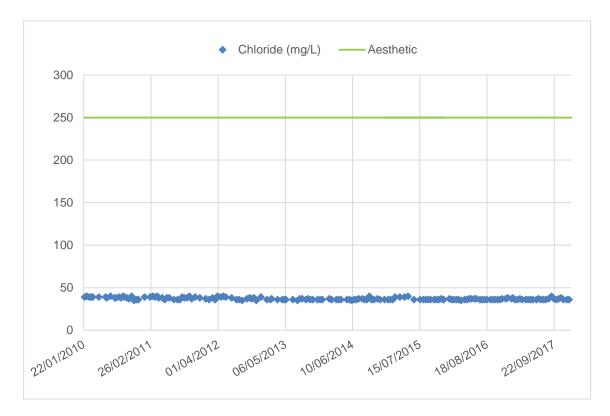




Figure 3.58 Barcaldine- Total Dissolved Solids


Figure 3.60 Barcaldine- Turbidity

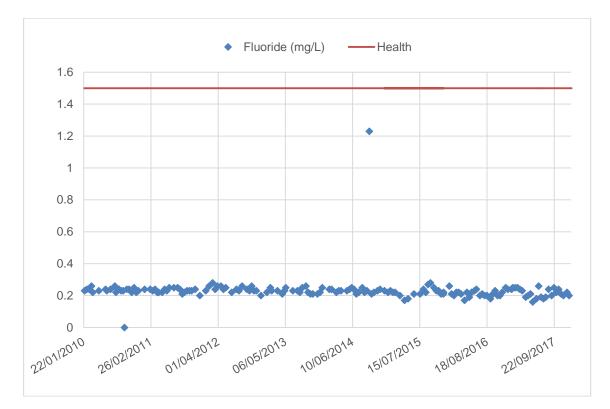
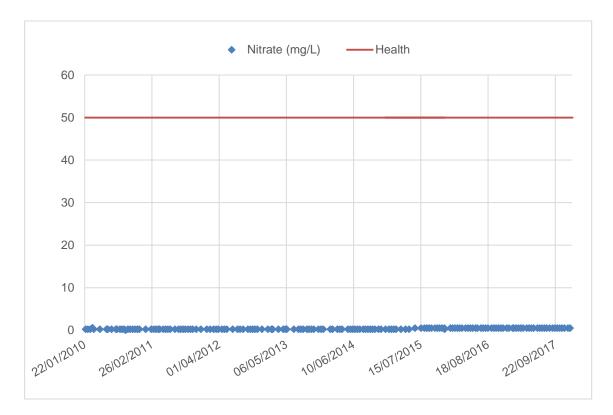
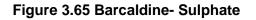




Figure 3.64 Barcaldine- Nitrate

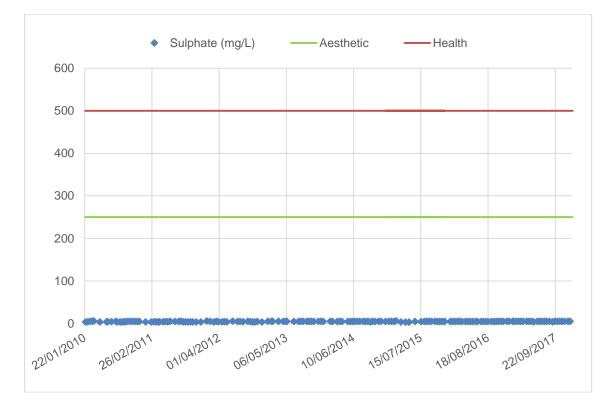
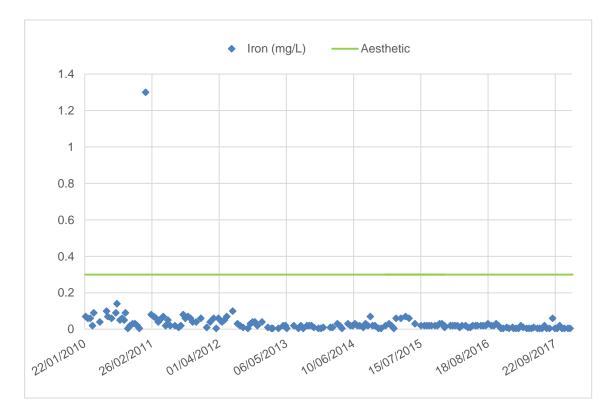
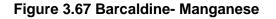




Figure 3.66 Barcaldine- Iron

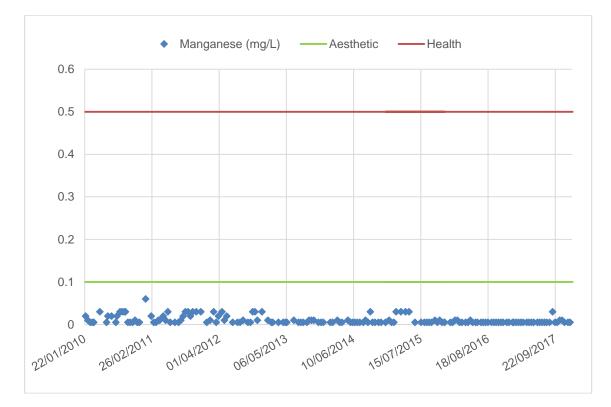
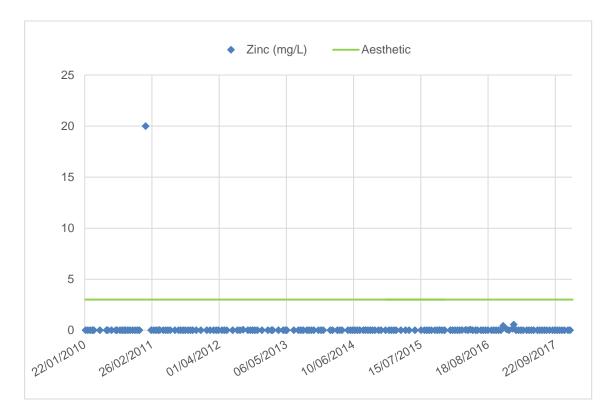



Figure 3.68 Barcaldine- Zinc

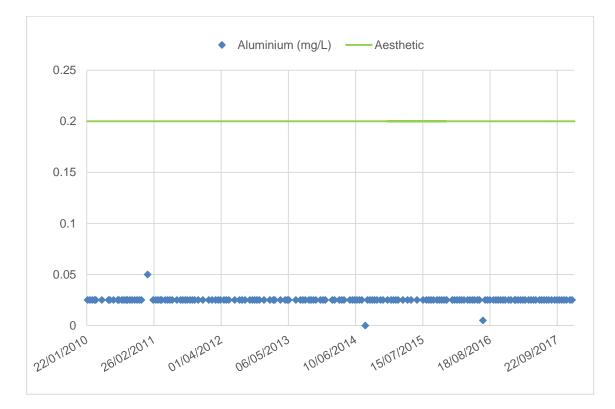
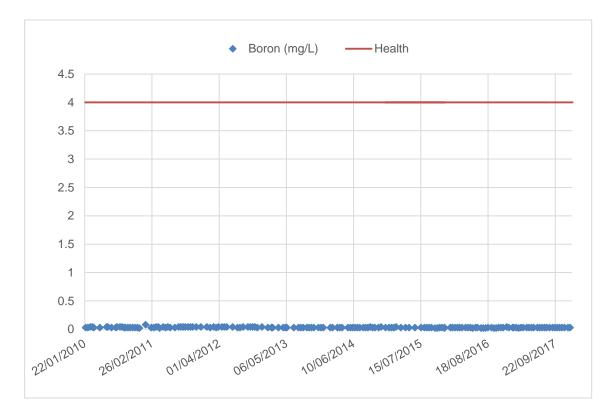



Figure 3.70 Barcaldine- Boron

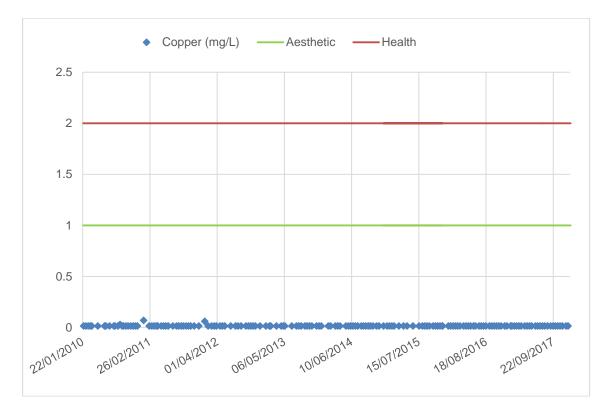
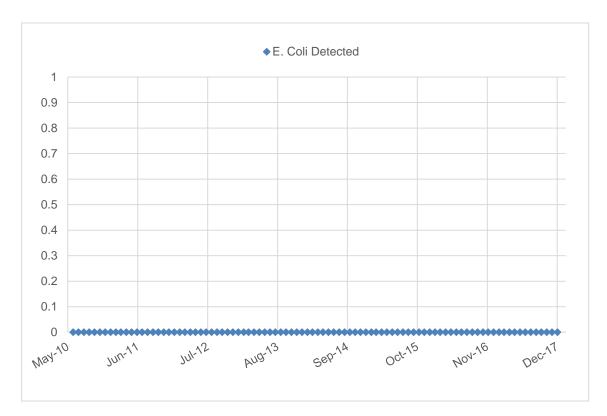



Figure 3.72 Barcaldine- E Coli

3.3.1 (b) Interpretation

Table 3.11 above shows aesthetic guideline value exceedances¹² for true colour, turbidity, iron, manganese and zinc.

The following aesthetic characteristics were detected (highlighted show exceedances):

- pH
- Hardness
- Silica
- Total Dissolved Solids
- True Colour
- Turbidity
- Sodium
- Chloride
- Sulphate
- Iron
- Manganese
- Zinc
- Aluminium
- Copper

The following health characteristics were detected (highlighted shows exceedances):

- Fluoride
- Nitrate
- Sulphate
- Manganese
- Boron
- Copper

Figure 3.55 provides a trend for the analysis of pH; there are fifteen exceedances. A maximum value of 8.81, average value of 8.316, a minimum value of 7.96 and a 95th percentile value of 8.48 have been determined. The aesthetic guideline value has a range of 6.5 - 8.5. While extreme pH values (<4 and >11) may adversely affect health, there is insufficient data to set a health guideline value. Water with a pH less than 6.5 may be corrosive. Were pH exceeds 8 the efficiency of chlorination decreases. Above 8.5 may cause scale and taste problems.

Figure 3.59 provides a trend for the analysis of true colour; there are five exceedances. The aesthetic guideline value is 15 HU. For total colour no health based guideline value is considered necessary. A maximum value of 33 HU, average value of 2.2 HU and a 95th percentile of 7 HU have been determined. Up to 25 HU is acceptable were turbidity is low, while 15 HU is just noticeable in a glass.

Figure 3.60 provides a trend for the analysis of turbidity; there are six exceedances. The aesthetic guideline value is 5 NTU. For turbidity there is insufficient data to set a guideline value based on health considerations, however where water has a value greater than 1 NTU some microorganisms may be shielded from disinfection. A maximum value of 250 NTU, average value of 1.6 NTU and a 95th percentile of 1 NTU have been determined. Six samples exceeded the aesthetic guideline of 5 NTU.

Figure 3.66 provides a trend for the analysis of iron; there are eight exceedances. A maximum value of 1.3mg/l, average value of 0.049mg/l and a 95th percentile value of 0.1mg/l have been determined. The aesthetic guideline value is 0.3mg/l. For iron there is insufficient data to set a guideline value

¹² As per the Australian Drinking Water Guidelines (2011)

based on health considerations. Iron occurs naturally in water, <1mg/l but up to 100mg/l in oxygen depleted groundwater. The taste threshold is 0.3mg/l. High concentrations of iron may stain laundry and fittings with iron bacteria causing blockages, taste / odour and corrosion. Iron bacteria, historically, has not been a problem for this water supply.

Figure 3.68 provides a trend for the analysis of Zinc; there was one exceedance. A maximum value of 20mg/l, average value of 0.061mg/l and a 95th percentile value of 0.03mg/l have been determined. The aesthetic guideline value is 3mg/l. There is insufficient data to set a guideline value based on health considerations. Four-hundred and nineteen samples analysed (<3mg/l) have acceptable levels of zinc, below taste thresholds. Natural concentrations are generally less than 0.01mg/l with most samples below this natural limit. Zinc occurs naturally in water and is typically higher in groundwater at the bottom of deep storages.

Of nine-hundred and ninety-two (992) samples analysed for E. coli there have been zero E. coli colonies detected (see Figure 3.91).

While there were aesthetic guideline value¹³ exceedances, there were no health guideline value exceedances recorded during the period summarised in Table 3.11.

3.3.2 Catchment Characteristics

Barcaldine is situated at the intersection of the Landsborough (A2) and Capricorn (A3) highways approximately 600km due west of Rockhampton. Barcaldine is east of Lagoon Creek in the Barcoo River catchment. Barcaldine is located on the join between sandy loam "desert" country and blacksoil "rolling plains" country 5 km north of the Alice River. The eastern side of Barcaldine is situated on highly permeable sandy loam natural soil underlain by an uneven hard rock which forms a basin that maintains a relatively high water table in places throughout the town. The western side of Barcaldine is situated on low permeable blacksoil. Barcaldine has a current population of 1,422 permanent residents and has a current demand of 4.4 Ml/day.

The average annual rainfall for Barcaldine is 497mm¹⁴. With the majority of the rain falling between late December and late March with little or no rainfall during any other period. The mean maximum temperature is 30.4°C¹⁴ although temperatures often exceed the 40°C mark during the summer months. The average annual pan evaporation for Barcaldine is approximately 3,000mm¹⁵. The town and the water supply infrastructure is not prone to flooding.

The Great Artesian Basin (GAB) covers approximately one-fifth of the Australian continent and contains 8.7 x 10⁶ GL of groundwater in the Jurassic sandstone aquifers. It is the largest groundwater and artesian basin in the world. The basin is located under mostly arid and semi-arid landscapes to the west of the Great Dividing Range. The GAB supports a wide array of activities such as pastoral, agriculture and mining as well as the rural communities, cultural and tourism activities. In the Barcaldine area the capping of existing free flowing aquifers has improved the pressure in the main town aquifers. The GAB is recharged by rainfall and stream flow infiltrating into the exposed sandstone on the edges of the basin. One of the first drilling of the GAB occurred in 1887 in Barcaldine, comprising of a free flowing artesian Bore.

Currently there are two bores in Barcaldine (Pomona and Acacia Street). Pomona Bore (RN 93744) has an annual allocation of 446 ML and the Acacia Street Bore (RN 69904) has an annual allocation of 904 ML. Figure 3.54 above shows the recharge, discharge and flow of the GAB and Barcaldine's relative location in relation to the GAB.

¹³ As per the Australian Drinking Water Guidelines (2011)

¹⁴ 30 year mean at Barcaldine Post Office (nearest available climate statistics)

¹⁵ DPI Water Resource's Commission

The Acacia Street bore is located at the Western end of Acacia Street. Pomona Bore is located on the Corner of Pine and Yew Street. The bores are 460m and 465m deep *respectively*. The bores yields are 39 l/s and 40 l/s respectively. The Acacia Street Bore has a free flowing pressure of 5m and free flowing yield of 21 l/s. Access to all bores is limited to authorised personnel only by way of security fencing and all bore headwork's are sealed against the possibility of deliberate contamination. The Pomona Bore was drilled in 2002. Appendix B Figure M-2012-005 shows the bore and reservoir locations and water reticulation layout on an aerial photo of the town. Appendix C contains a copy of the bore card reports obtained from Department of Environmental & Resource Management.

Barcaldine sewerage collection scheme is comprised of a conventional gravity mains collection system with pumped rising main to a trickling filter treatment plant. The treatment plant is comprised of one imhoff tank, trickling filter, sludge ponds and oxidation ponds. Treated effluent from the ponds is discharged to a drain at Lagoon Creek where it is left to evaporate. Sludge's are captured, dried and disposed of separately. The ground water sources show no indication of contamination from the sewage treatment plant however the artesian bores have been annuli sealed off to prevent contamination from surface water leachate. Currently effluent is not reused however this may be reviewed in the future.

3.3.3 Hazard Identification

The hazards and hazardous events and their sources that adversely affect water quality are documented in Table 3.13 below and include those affecting:

- Catchment
- Sourcing infrastructure
- Treatment plants (where applicable)
- Disinfection process(es) (where applicable)
- Distribution system

3.3.3 (a) Identifying and Documenting Hazards And Hazardous Events

The hazards and hazardous events were identified using data contained in the plan and following site visits and a risk assessment workshop which was conducted on 8 and 9 November 2011. A recent risk assessment workshop was conducted in December 2017 prior to amendment of the plan;

- Section 2.3 Barcaldine Water Supply Scheme
- Section 3.3.1 Water quality information
- Section 3.3.2 Catchment Characteristics

Scheme Component / Sub-component	Hazardous Event	Hazard	Max	ximum risk		Existing Preventive Measures / Barriers.	Re	sidual risk		Uncertainty	Comments/ Proposed Further Risk Reduction
/ Sub-component			Consequence	Likelihood	Risk level	weasures / Darners.	Consequence	Likelihood	Risk level		Actions
	Sewage system discharges, agricultural run-off	Bacteria	Moderate	Rare	Low (3)	Nil	Moderate	Rare	Low (3)	Reliable	
		Hardness	Insignificant	Rare	Low (1)	Nil	Insignificant	Rare	Low (1)	Confident	
		рН	Insignificant	Unlikely	Low (2)	Nil	Insignificant	Unlikely	Low (2)	Confident	
Bore	Hazard that arises from the natural	True Colour	Insignificant	Rare	Low (1)	Nil	Insignificant	Rare	Low (1)	Confident	Acceptable risk, continue to monitor for exceedances
	geological processes in the aquifer.	Turbidity	Insignificant	Rare	Low (1)	Nil	Insignificant	Rare	Low (1)	Confident	
		Iron	Insignificant	Rare	Low (1)	Nil	Insignificant	Rare	Low (1)	Confident	
		Zinc	Insignificant	Rare	Low (1)	Nil	Insignificant	Unlikely	Low (2)	Confident	
	Power Outage	Disruption to supply	Moderate	Unlikely	Medium (6)	Backup generator	Insignificant	Rare	Low (1)	Confident	Acceptable risk
Sourcing Infrastructure	Vermin barrier not secured	Bacteria	Moderate	Rare	Low (3)	Vermin barrier protection Visual check	Moderate	Rare	Low (3)	Confident	ABM1 Operational &
	Accidental or intentional contamination	Harmful substances (not identified)	Catastrophic	Rare	Medium (6)	Chain-link fencing and locked gates. Reservoir roof lids.	Catastrophic	Rare	Medium (6)	Uncertain	Maintenance Procedures
Treatment Plant					Reticul	ated Water Untreated					
Disinfection Process	Reticulated Water Not Disinfected										
Distribution System	Reticulation maintenance and repair	Bacteria	Moderate	Rare	Low (3)	Mains repair procedure and Monitoring	Moderate	Rare	Low (3)	Uncertain	ABM1 Operational & Maintenance Procedures
Whole of System	Flights carrying samples to lab delayed/cancelled	Logistical	Insignificant	Possible	Low (3)	Nil	Insignificant	Possible	Low (3)	Confident	Acceptable risk

3.3.3 (b) Hazard Identification (and Risk Assessment) Team

The personnel responsible for the hazard identification and risk assessment process, their roles and responsibilities are detailed in the Table below.

Typical Job Title for Key Personnel	What Role Did Each Person Play On the Team?	What Expertise and System Knowledge Did the Person Bring?
Manager of Engineering Services	Management of DWQMP Process, Risk Assessment Procedure & Chairing Risk Assessment Workshop	High level knowledge, risk assessment and identification, general engineering experience in the management of the systems
Engineer (Internal / External)	Author, Risk Assessment, Risk Assessment Workshop	Detailed knowledge of the system, water risk assessment and identification
Water Engineer (Internal / External)	Risk Assessment Workshop	Detailed knowledge of drinking water quality management, outside perspective, risk assessment and identification
Water / Technical Officers	Risk Assessment Workshop	Detailed knowledge of individual schemes, risk identification

3.4 Jericho Water Quality and Catchment Characteristics

Jericho water supply is composed of two sub artesian bores which are treated prior to reticulation. The source water was not of a sufficient quality to reticulate directly to the town.

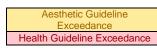
3.4.1 Water Quality Information

Water quality information for Jericho includes the following:

- (a) Summary
- (b) Interpolation

3.4.1 (a) Summary

Table 3.15 below summarises the available reticulated water quality for the Jericho water supply scheme. Table 3.17 below summarises the limited raw water quality available¹⁶.

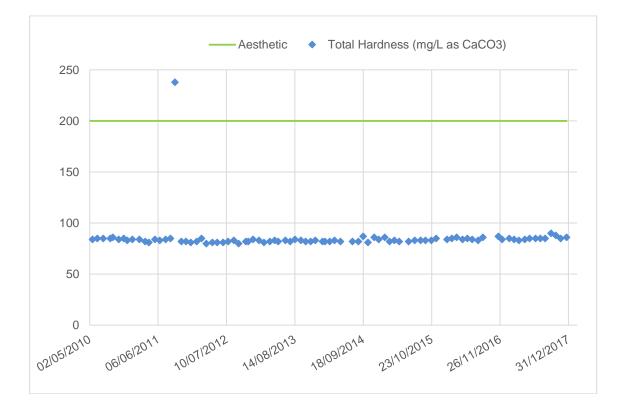

Figure 3.73 to Figure 3.91 below show trends of the main characteristics contained in Table 3.15 for the treated water. Figure 3.90 to Figure 3.106 below show trends of the main characteristics contained in Table 3.17 for the raw water.

The responsibility for obtaining the water samples rests with the DWSP and samples are collected by the Technical Officer monthly. Samples are sent to Queensland Health Scientific Services for analysis. The DWSP also samples and analyses drinking water for E. coli.

¹⁶ DWSP generally only monitors the treated water supplied to reticulation

Table 3.15 Jericho Reticulated Water

Jericho Water Supply	Start Dat	te	23/09/2009	End	Date:	19/12/2017					
				Su	mmary of Re	sults			Guide	eline Value	
Characteristic	Units	No. of Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedances
Conductivity	uS/cm	90	1760.000	916.700	866.000	122.163	927.100				
рН		91	8.200	7.352	6.080	0.302	7.600			≥6.5 & ≤ 8.5	4
Total Hardness	mg/L as CaCO3	90	238.000	85.267	80.000	16.290	86.550			200	1
Temporary Hardness	mg/L as CaCo ₃	90	179.000	38.344	28.000	20.776	43.000			200	0
Alkalinity	mg/L CaCo ₃	90	179.000	38.344	28.000	20.776	43.000				
Residual Alkalinity	meq/L	90	0.000	0.000	0.000	0.000	0.000				
Silica	mg/L	90	72.000	13.178	12.000	6.258	13.000			80	0
Total Dissolved Ions	mg/L	90	1060.000	480.533	166.000	92.152	486.550				
Total Dissolved Solids	mg/L	91	1020.000	471.813	441.000	77.365	472.500			600	2
True Colour	Hazen	91	17.000	1.453	0.050	2.589	5.500			15	1
Turbidity	NTU	91	3.000	0.535	0.050	0.392	1.000			5	0
pH (Saturation)*		90	9.300	9.099	7.600	0.249	9.200				
Saturation Index		90	0.500	-1.754	-3.100	0.439	-1.500				
Mole Ratio		90	5.000	3.736	2.500	0.335	4.100				
Sodium Absorption Ratio		90	7.200	6.421	6.200	0.140	6.600				
Figure of Merit		90	0.500	0.303	0.300	0.023	0.300				
Sodium	mg/L	90	265.000	137.600	128.000	17.196	140.550			180	2
Potassium	mg/L	90	12.000	7.749	7.200	0.658	7.955				
Calcium	mg/L	90	37.000	6.729	5.000	4.499	6.855				
Magnesium	mg/L	90	39.000	17.089	16.000	3.126	17.000				
Hydrogen	mg/L	90	0.000	0.000	0.000	0.000	0.000				
Bicarbonate	mg/L	90	202.000	44.600	34.000	17.258	52.000				
Carbonate	mg/L	90	2.000	0.120	0.000	0.229	0.100				
Hydroxide	mg/L	90	0.022	0.000	0.000	0.002	0.000				
Chloride	mg/L	90	400.000	226.911	210.000	25.111	230.000			250	2
Fluoride	mg/L	89	0.330	0.195	0.140	0.026	0.240	1.5	0		
Nitrate	mg/L	90	31.000	0.825	0.025	3.207	1.110	50	0		
Sulphate	mg/L	90	46.000	36.756	34.000	1.809	39.550	500	0	250	0
Iron	mg/L	90	0.060	0.006	0.005	0.007	0.005			0.3	0
Manganese	mg/L	90	0.040	0.006	0.005	0.005	0.005	0.5	0	0.1	0
Žinc	mg/L	88	0.620	0.055	0.010	0.087	0.080			3	0
Aluminium	mg/L	90	0.100	0.026	0.020	0.008	0.025			0.2	0
Boron	mg/L	90	0.310	0.120	0.100	0.029	0.130	4	0		
Copper	mg/L	90	0.015	0.015	0.015	0.000	0.015	2	0	1	0
Chlorate	mg/L	55	0.890	0.322	0.090	0.190	0.689				
E. coli	-	256	0.000	0.000	0.000	0.000	0.000	0	0		


Table 3.16 Water quality complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem
2018	0	0			
2017	0	0			
2016	0	0			
2015	No Data		Data not available		
2014					
2013					
2012					
2011	6	43			
2010	3	23			
2009	3	23			

Figure 3.73 Jericho Treated - pH at 23°C

Figure 3.74 Jericho Treated - Total Hardness

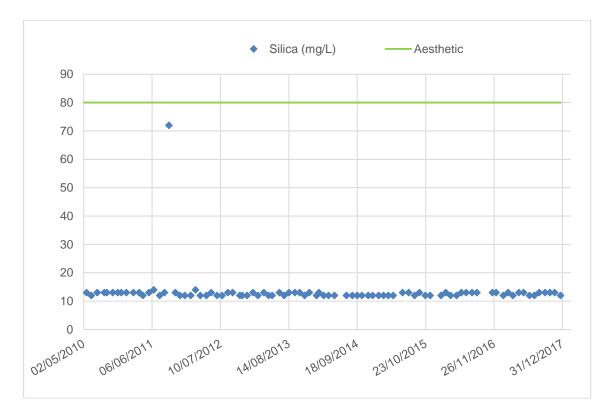
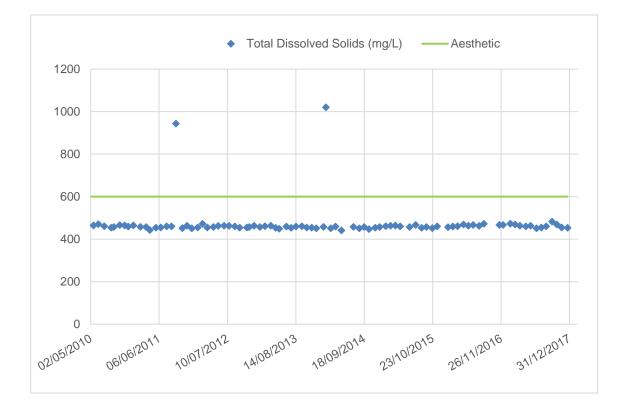



Figure 3.76 Jericho Treated - Total Dissolved Solids

May 2018

Figure 3.77 Jericho Treated - True Colour

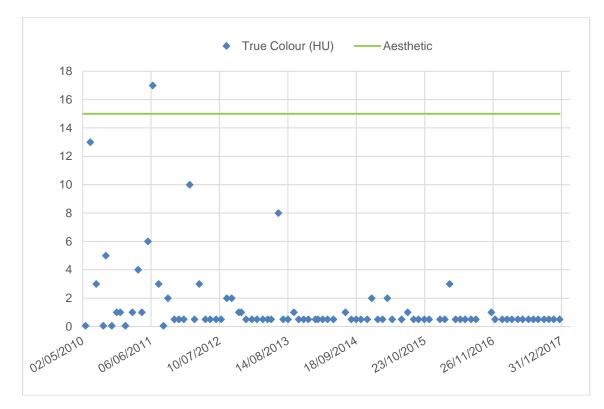
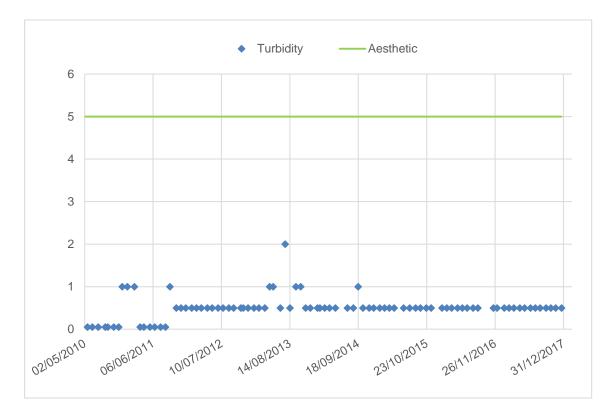
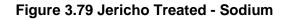




Figure 3.78 Jericho Treated – Turbidity

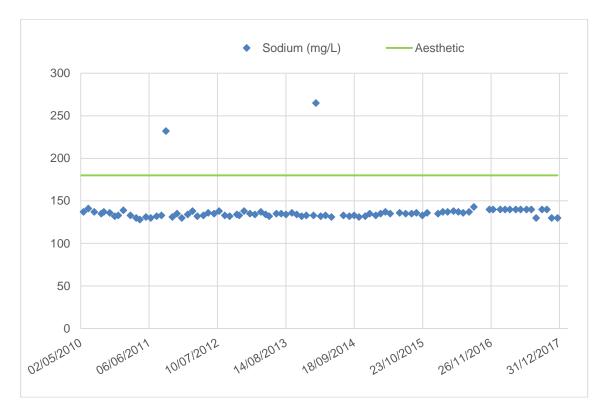


Figure 3.80 Jericho Treated – Chloride

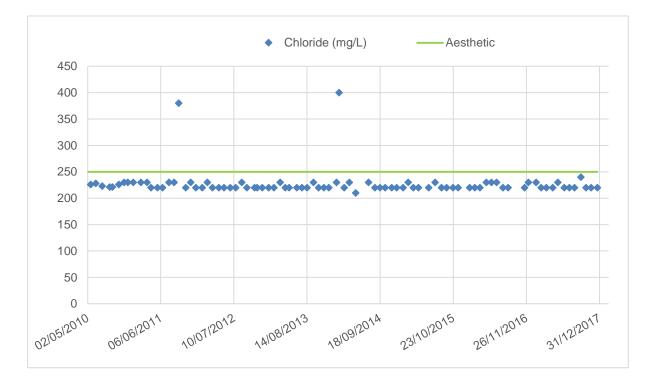


Figure 3.81 Jericho Treated – Fluoride

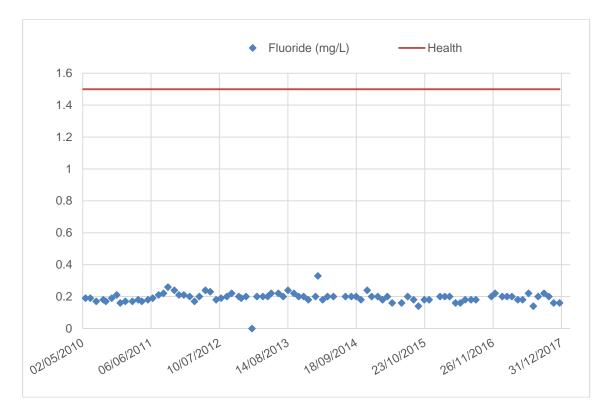


Figure 3.82 Jericho Treated - Nitrate

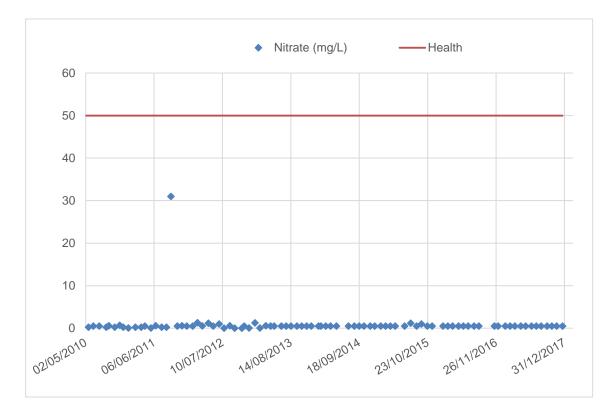
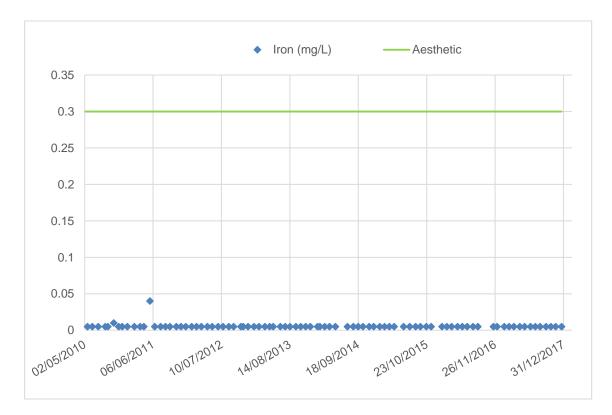



Figure 3.84 Jericho Treated – Iron

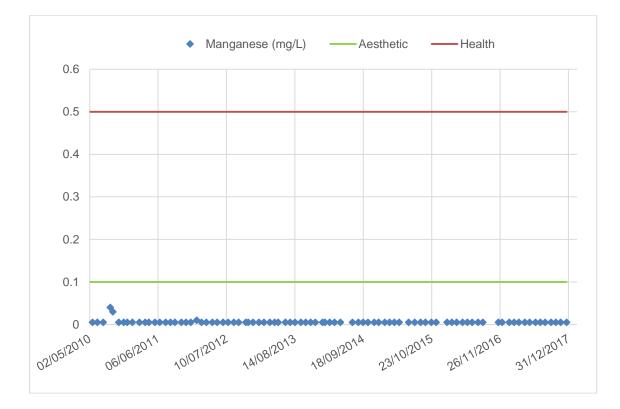


Figure 3.86 Jericho Treated – Zinc

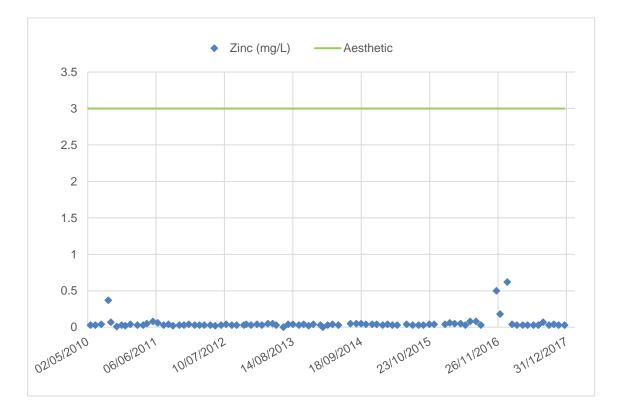


Figure 3.87 Jericho Treated - Aluminium

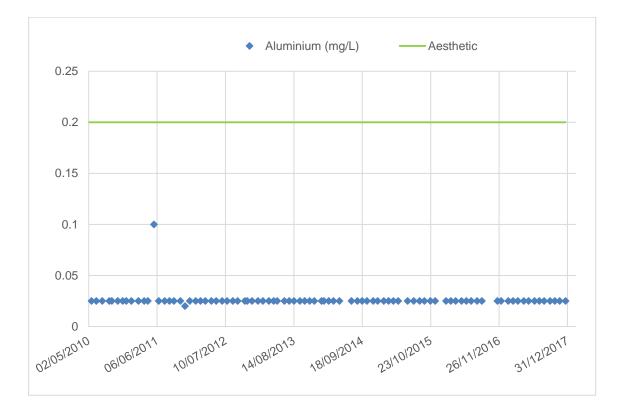
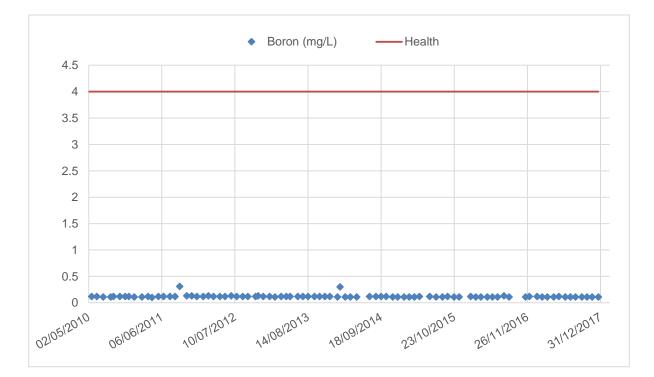



Figure 3.88 Jericho Treated – Boron

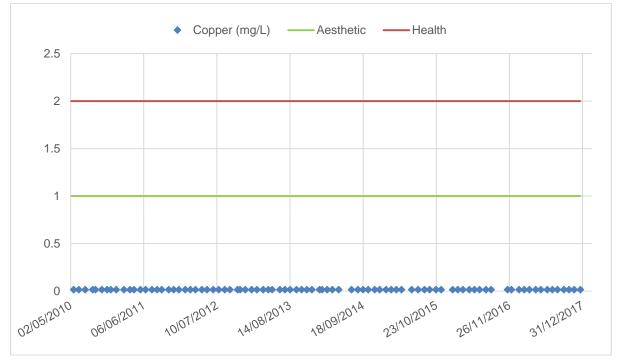
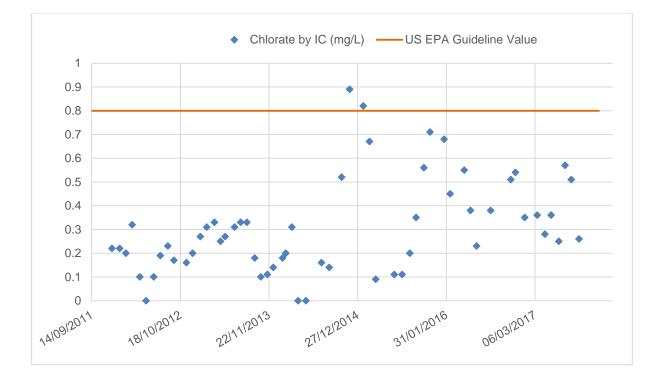
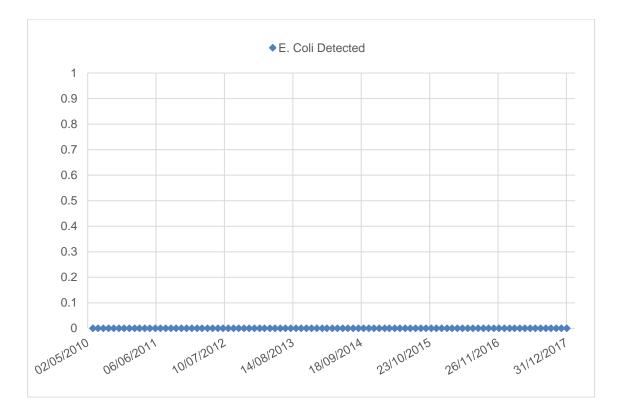




Figure 3.90 Jericho Treated - Chlorate

106

Figure 3.91 Jericho Treated – E. Coli

Table 3.17 Jericho Source Water

Alpha Water Supply	Start Date	16/11/2001		End Date:	11/09/201 1						
Characteristic	No. of		Sum	mary of Resu	-			Guideline Value			
	Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health Exceedances		Aesthetic	Exceedances	
Conductivity (µS/cm at 25ºC)	11	1650.000	1004.818	792.000	273.268	1575.000					
pH at 23⁰C	12	7.360	6.753	5.150	0.646	7.333			≥6.5 & ≤ 8.5	3	
Total Hardness (as CaCO3)	12	242.000	109.341	79.000	55.702	232.650			200	2	
Temporary Hardness (mg/L CaCO ₃)	11	167.000	57.864	26.000	48.974	161.000			200	0	
Alkalinity (mg/L CaCO₃)	12	167.000	57.042	26.000	46.968	160.400					
Residual Alkalinity (meq/L)	11	0.000	0.000	0.000	0.000	0.000					
Silica (mg/L)	11	82.000	24.364	11.000	25.578	78.500			80	1	
Total Dissolved Ions (mg/L)	11	964.000	552.182	439.000	184.515	942.000					
Total Dissolved Solids (mg/L)	12	942.000	538.500	431.000	172.289	918.900			600	2	
True Colour	12	6.000	1.875	0.500	1.660	4.900			15	0	
Turbidity (NTU)	12	4.000	1.125	0.000	1.120	3.450			5	0	
pH Sat (calc for CaCO ₃)	11	9.300	8.900	7.700	0.548	9.250					
Saturation Index	11	-0.700	-2.000	-3.200	0.773	-0.700					
Mole Ratio	11	5.200	4.173	3.600	0.548	5.150					
Sodium Absorpt. Ratio	11	6.700	6.400	6.000	0.241	6.700					
Figure of Merit Ratio	11	0.500	0.336	0.300	0.077	0.500					
Sodium Na+	11	240.000	152.091	125.000	39.420	235.000			180	2	
Potassium K ⁺	11	9.700	7.782	6.900	0.883	9.500					
Calcium Ca ⁺⁺	11	36.000	11.173	5.600	11.021	34.500					
Magnesium Mg**	11	37.000	20.273	16.000	7.222	35.500					
Hydrogen H⁺	11	0.000	0.000	0.000	0.000	0.000					
Bicarbonate HCO3 ⁻	11	203.000	70.000	32.000	58.921	194.000					
Carbonate CO3	11	0.200	0.045	0.000	0.066	0.150					
Hydroxide OH ⁻	11	0.000	0.000	0.000	0.000	0.000					
Chloride CI-	11	372.000	248.182	205.000	55.897	366.000			250	2	
Fluoride F ⁻	11	0.300	0.208	0.170	0.031	0.260	1.5	0			
Nitrate NO ₃ -	11	33.500	6.009	0.250	12.158	31.750	50	0			
Sulphate SO₄	11	46.000	36.818	32.000	3.537	42.500	500	0	250	0	
Iron FE	13	0.109	0.020	0.005	0.030	0.080			0.3	0	

Alpha Water Supply	Start Date	16/11/2001		End Date:	11/09/201 1						
Characteristic	No. of		Sum	mary of Resu	ilts			Guideline Value			
	Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedances	
Manganese Mn	13	0.081	0.022	0.005	0.019	0.051	0.5	0	0.1	0	
Zinc Zn	12	0.370	0.065	0.005	0.094	0.216			3	0	
Aluminium Al	12	0.260	0.045	0.025	0.065	0.131			0.2	1	
Boron B	12	0.270	0.133	0.000	0.070	0.270	4	0			
Copper Cu	12	0.140	0.025	0.001	0.035	0.077	2	0	1	0	

		Aesthetic Guideline Exceedance
--	--	--------------------------------

Health Guideline Exceedance

Figure 3.90 Jericho Source - pH at 23°C

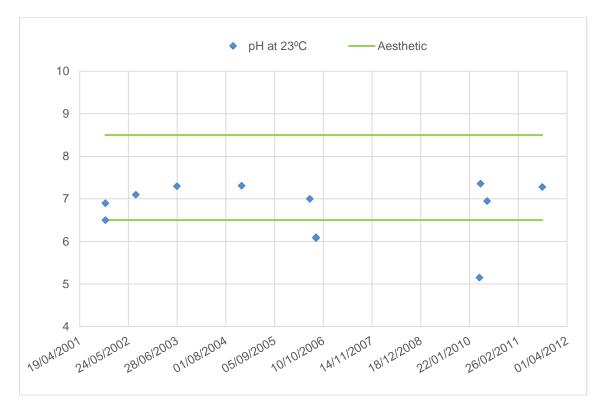
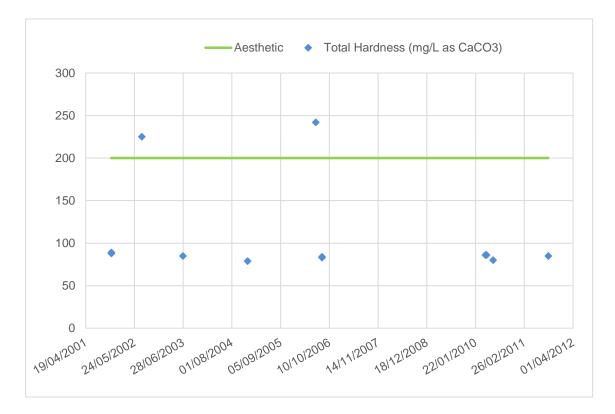
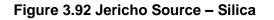




Figure 3.91 Jericho Source - Total Hardness

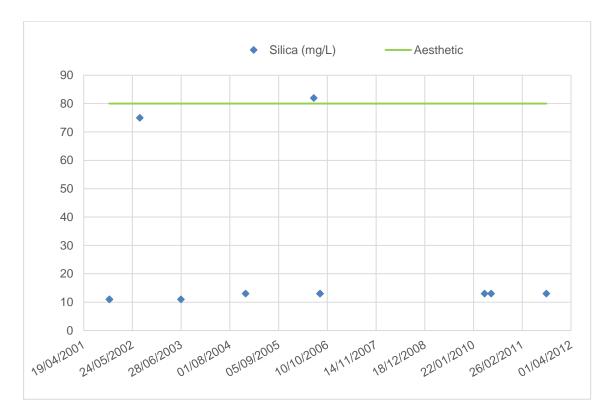


Figure 3.93 Jericho Source - Total Dissolved Solids

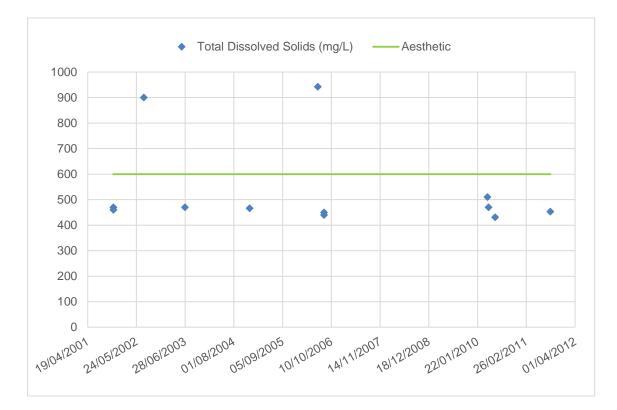


Figure 3.94 Jericho Source - True Colour

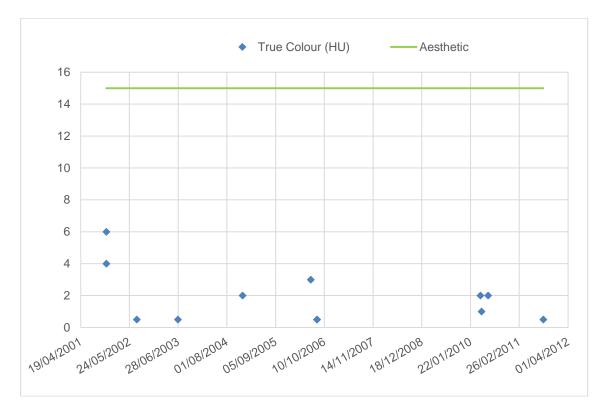
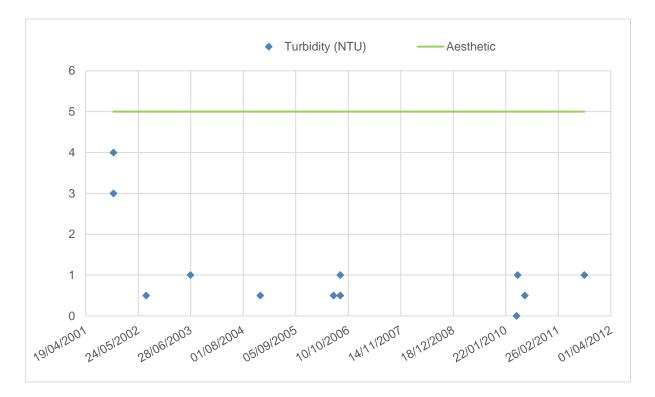




Figure 3.95 Jericho Source – Turbidity

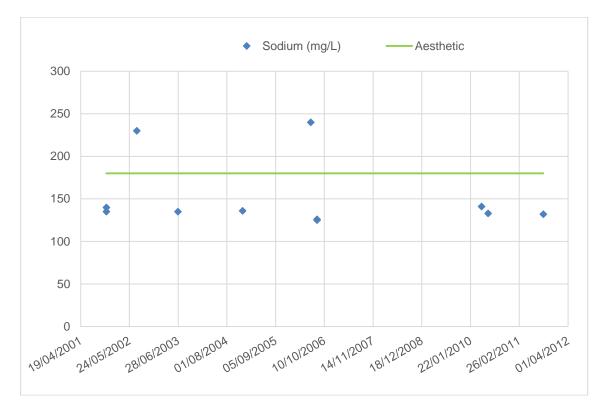


Figure 3.97 Jericho Source – Chloride

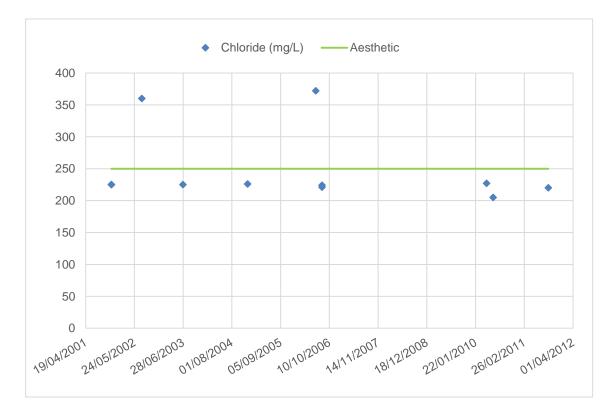
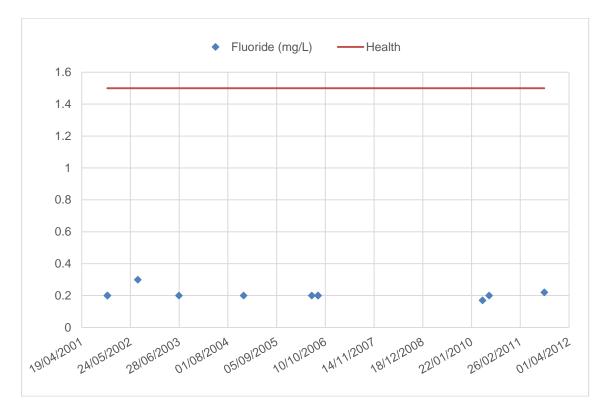
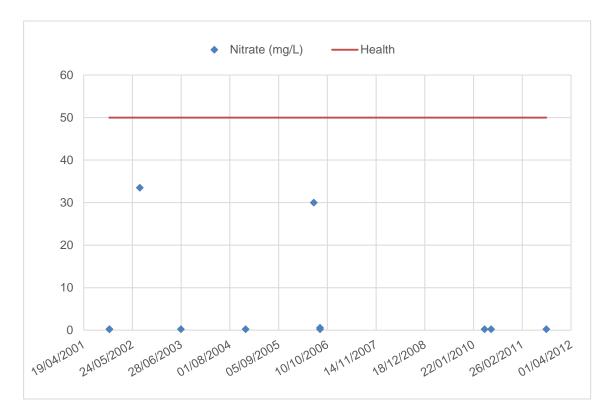
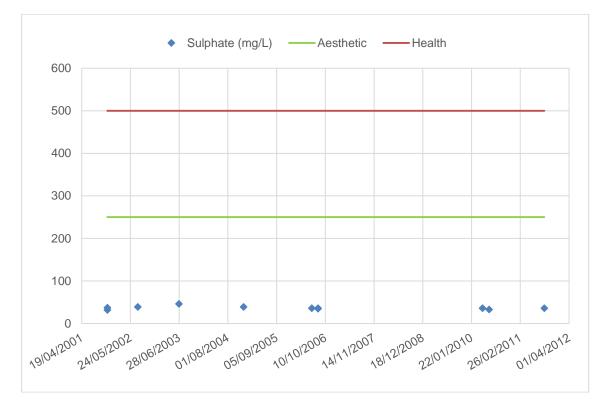


Figure 3.98 Jericho Source - Fluoride

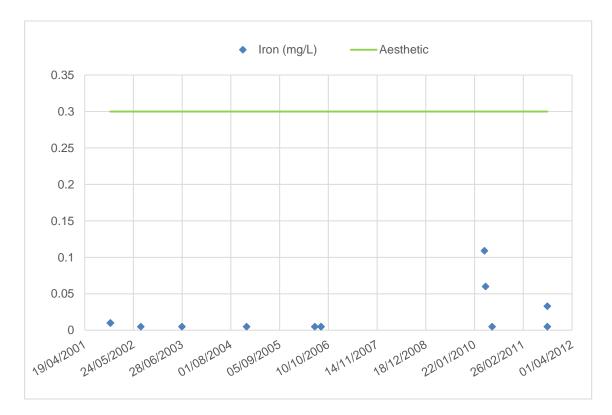

Figure 3.99 Jericho Source – Nitrate



Figure 3.103 Jericho Source - Zinc

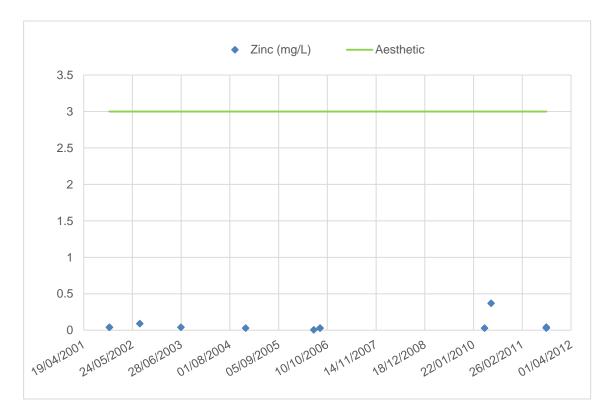


Figure 3.104 Jericho Source - Aluminium

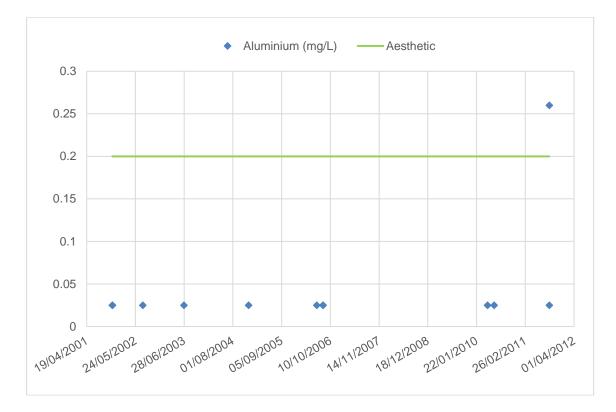
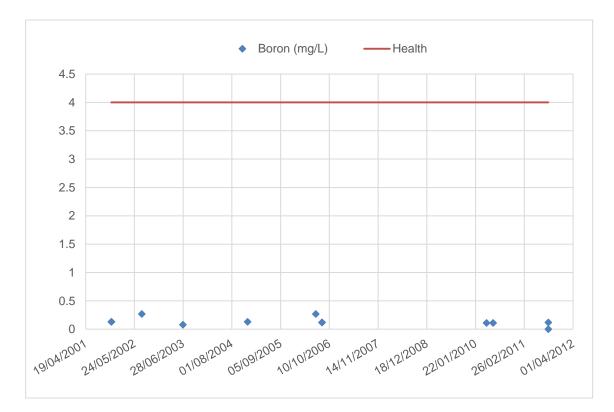
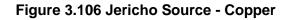
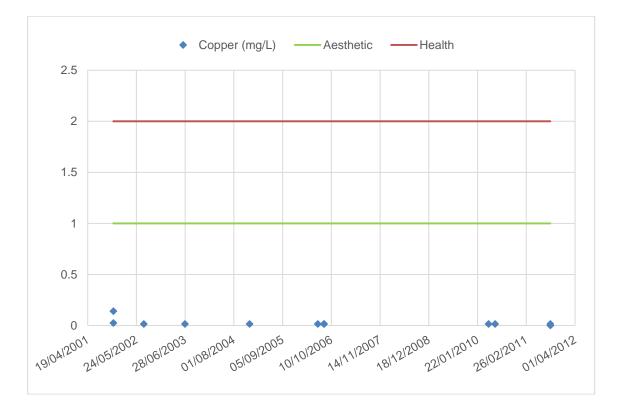





Figure 3.105 Jericho Source - Boron

3.4.1 (b) Interpretation

Table 3.15 above shows aesthetic guideline value exceedances¹⁷ for pH, total hardness, total dissolved solids, true colour, sodium and chloride.

The following aesthetic characteristics were detected for the treated water supply (highlighted show exceedances):

- pH
- Hardness
- Silica
- Total Dissolved Solids
- True colour
- Turbidity
- Sodium
- Chloride
- Fluoride
- Iron
- Manganese
- Zinc
- Aluminium

The following health characteristics were detected (highlighted shows exceedances):

- Fluoride
- Nitrate
- Sulphate
- Boron
- Chlorate

Figure 3.73 provides a trend for the analysis of pH; there were four exceedances. A maximum value of 8.2, average value of 7.35, a minimum value of 6.08 and a 95th percentile value of 7.6 have been determined. The aesthetic guideline value has a range of 6.5 - 8.5. While extreme pH values (<4 and > 11) may adversely affect health, there is insufficient data to set a health guideline value. Water with a pH less than 6.5 may be corrosive. Were pH exceeds 8 the efficiency of chlorination decreases. Above 8.5 may cause scale and taste problems.

Figure 3.74 provides a trend for the analysis of total hardness; there is one exceedance. A maximum value of 238mg/l, average value of 85.3mg/l and a 95th percentile value of 86.6mg/l have been determined. The aesthetic guideline value is 200 mg/l (as CaCO₃). For hardness no health based guideline value is considered necessary. Water with a hardness of 60 – 200mg/l is regarded as a good quality drinking water.

Figure 3.76 provides a trend for the analysis of total dissolved solids; there was two exceedances. The aesthetic guideline value is 600 mg/l. For total dissolved solids no health based guideline value is considered necessary. A maximum value of 1020mg/l, average value of 471.8mg/l and a 95th percentile of 472.5mg/l were determined.

Figure 3.77 provides a trend for the analysis of true colour, there was one exceedance. The aesthetic guideline value is 15HU. For total colour no health based guideline value is considered necessary, however it should be noted that if colour is high at the time of disinfection then the water should be checked for disinfection by products such as Trihalomethane (THM) which have been associated through epidemiological studies with some adverse health effects. Water is disinfected before

¹⁷ As per the Australian Drinking Water Guidelines (2011)

reticulation. A maximum value of 17HU, average value of 1.5HU and a 95th percentile of 5.5HU were determined. Up to 25 HU is acceptable were turbidity is low, while 15 HU is just noticeable in a glass.

Figure 3.79 provides a trend for the analysis of sodium; there was two exceedances. A maximum value of 265mg/l, average value of 137.6mg/l and a 95th percentile value of 140.6mg/l were determined. The aesthetic guideline value is 180 mg/l. For sodium no health based guideline value is considered necessary.

Figure 3.80 provides a trend for the analysis of chloride; there was two exceedances. A maximum value of 400mg/l, average value of 226.9mg/l and a 95th percentile value of 230mg/l were determined. The aesthetic guideline value is 180 mg/l. For chloride no health based guideline value is considered necessary. High concentrations of chloride are more common in groundwater supplies.

Chlorate is a by-product of chlorination. While there is currently insufficient data to set a healthrelated guideline value, the USA EPA value of 0.8mg/l has been adopted to determine health risks associated with concentrations present. Chlorate has been detected above the US EPA recommended value on two occasions since BRC commenced a program of monitoring for Chlorates. A maximum value of .89mg/l, average value of .32mg/l and a 95th percentile value of .69mg/l were determined.

There are aesthetic guideline value exceedances, and two health guideline value¹⁸ exceedances recorded during the period summarised in Table 3.11 for treated water.

Of two-hundred and fifty-six (256) samples analysed for E. coli there have been zero E. coli colonies detected (see Figure 3.91).

Table 3.17 above shows aesthetic guideline value exceedances¹⁹ for pH, hardness, silica, total dissolved solids, sodium, chloride and aluminium for raw water. These exceedances are not discussed here.

3.4.2 Catchment Characteristics

Jericho is located on the western side of the Great Dividing range on the flood plain of the Jordan Creek and in the Barcoo River catchment. The Jordan Creek sub-catchment extends approximately 70km to the south and includes a number of tributary catchments. Generally Jordan Creek will run annually. Jericho is located on porous sandy loam natural soil underlain by varying subsoil clay and sandy clay strata. Generally the countryside is devoid of grass due to the low rainfall and reasonably high temperatures in the region. Jericho is flat and has been prone to flooding in the past. A levee has been constructed and should provide additional protection in the event of a flooding event. Jericho has a current population of 139 permanent residents and has a current demand of 0.132 Ml/day.

Jericho is located in the prominent Central Western Queensland beef and wool producing area. Whilst cattle and sheep grazing are the main industries, rail transport and road infrastructure construction and maintenance also contributes significantly to provide a stable employment base for the area. Tourism is also a significant industry within the town.

The average annual rainfall for Jericho is 497mm²⁰. With the majority of the rain falling between late December and late March with little or no rainfall during any other period. The mean maximum temperature is 30.4°C²⁰ although temperatures often exceed the 40°C mark during the summer months. The average annual pan evaporation for Jericho is approximately 2,800mm²¹.

¹⁸ As per the USA EPA standard

¹⁹ As per the Australian Drinking Water Guidelines (2011)

²⁰ 30 year mean at Barcaldine Post Office (nearest available climate statistics)

²¹ DPI Water Resource's Commission

Severe flooding of Jericho has occurred on a number of occasions. In 1990 the town was inundated except for a small section of the railway where the Capricorn Highway crosses the central railway line on the north-eastern end of town. The town has experienced six to seven major floods in the past century including the most recent event in 2010/2011. The recently completed levee bank should provide additional protection in the event of a flood.

Currently there are two sub artesian bores in Jericho. The dual bore field is located on the same site as the water treatment plant off Darwin Street. The bores are 120m and 124m deep and yield 10 l/s each. Access to all bores is limited to authorised personnel only by way of security fencing and all bore headwork's are sealed against the possibility of deliberate contamination. The bore water quality does not comply with Australian Drinking Water Quality Guidelines. Appendix B Figure M-2012-006 shows the bores and water treatment plant locations and water reticulation layout on an aerial photo of the town.

There are three potential water bearing formations in the Jericho area, the Clemantis Sandstone, the Jordan Creek Alluvium and the Tertiary Sediments. During test drilling the Clemantis Sandstone and the Jordan Creek Alluvium formations were ruled out as potential sources due to high infrastructure costs and limited water supplies respectively.

The town is located just west of the Great Dividing Range and on the edge of the Great Artesian Basin. The Clematis Sandstone is a water bearing formation and is part of the artesian basin. This formation outcrops east of Jericho and dips to the west.

It is overlain by Moolyamber Formation (a poor producer of water) and the sedimentary Jordan Creek Alluvium and Clemantis Sandstone materials at Jericho. The Clematis is not generally tapped in the western parts of the artesian basin due to its extreme depth, the shallower artesian units more commonly tapped outcrop about 30 kilometres west of Jericho and do not occur in this area.

Although the mapping in this area does not show any detail on major structures, there is a possibility that features such as faults and folds are located in the vicinity of Jericho.

The Tertiary Sediments formation is considerably older than the recent Jordan Creek Alluvium and consists of fine sands, sandstone, siltstone, claystone, and shales. The unconsolidated sediments in this formation are also "alluvial" in nature but these sediments were deposited by much older and larger fluvial systems than the present creeks in the area. Similar Tertiary Sediments are known to cover thousands of square kilometres in Central Queensland, and are also located at Alpha.

Groundwater is extracted from the fine sands and weathered sandstones in this formation. The yields and quality from the Tertiary Sediments in Central Queensland are known to be extremely variable and around the Jericho area the formation runs true to form. Supplies can vary from 0.5 to 18.0 l/s and the quality from very good to saline. There are a number of small, possibly interconnected water beds in this formation and these may occur to depths as deep as 150m at Jericho. Data indicates that these water beds occur as horizontal layers that extend for some distance. The water beds are made up of very fine sands or weathered sandstone and each water bed can vary from less than 1m to 10m in thickness.

Jericho does not have a sewage collection or treatment system with sewage conveyed to individual septic tanks (with percolation). BRC is currently considering the feasibility of constructing a sewage collection and treatment system for the town with the possibility of utilising the reclaimed water for irrigation purposes. The groundwater sources show no indication of contamination from the septic tanks. The sub artesian bores have been annuli sealed off to prevent contamination from surface water leachate.

3.1.2 (a) above refers.

3.4.3 Hazard Identification

The hazards and hazardous events and their sources that adversely affect water quality are documented in Table 3.22 below and include those affecting:

- Catchment
- Sourcing infrastructure
- Treatment plants (where applicable)
- Disinfection process(es) (where applicable)
- Distribution system

3.4.3 (a) Identifying and documenting hazards and hazardous events

The hazards and hazardous events were identified using data contained in the plan and following site visits and a risk assessment workshop which was conducted on 8 and 9 November 2011. A recent risk assessment workshop was conducted in December 2017 prior to amendment of the plan;

- Section 2.4 Jericho Water Supply Scheme
- Section 3.4.1 Water quality information
- Section 3.4.2 Catchment Characteristics

Table 3.18 Jericho Hazard Identification, Risk Assessment and Uncertainty

Scheme Component /	Hazardous Event	Hazard	Maximum Risk		Existing Preventive Measures / Barriers.	R	esidual risk		Uncertainty	Comments/ Proposed Further Risk Reduction Actions		
Sub-component			Consequence	Likelihood	Risk level		Consequence	Likelihood	Risk level			
	Septic system discharges	Bacteria	Catastrophic	Unlikely	High (10)	Disinfection Automated Chlorine monitoring Telemetry alarms for dosing failure	Moderate	Rare	Low (3)	Reliable	Continue to monitor for E.coli.	
	Flood event	Substances (not identified)	Catastrophic	Rare	Medium (6)	Treatment, Capped Bores	Moderate	Rare	Low (3)	Uncertain	J1: Draft standard operating procedures and / or manual of	
		рН	Insignificant	Unlikely	Low (2)	pH Adjustment, Automated monitoring	Insignificant	Rare	Low (1)	Reliable	operations.	
Source		Hardness	Insignificant	Possible	Low (3)	Nil	Insignificant	Possible	Low (3)	Reliable	J2 Commence sampling source water in addition to treated water.	
	Hazard that arises from	TDS	Insignificant	Almost Certain	Medium (6)	Nil	Insignificant	Almost Certain	Medium (6)	Reliable	J3 Identify effect of flooding on	
	the natural geological processes in the aquifer.	True Colour	Insignificant	Rare	Low (1)	flocculation, clarification and filtration	Insignificant	Rare	Low (1)	Reliable	bore water quality considering private bores which exist on the flood plain which may not be	
		Sodium	Insignificant	Likely	Medium (5)	Nil	Insignificant	Likely	Medium (5)	Reliable	capped.	
		Chloride	Insignificant	Likely	Medium (5)	Nil	Insignificant	Likely	Medium (5)	Reliable	-	
	Power Outage	Disruption to supply	Moderate	Unlikely	Medium (6)	Elevated reservoir (limited backup) and Mobile Backup generator	Insignificant	Rare	Low (1)	Confident	Acceptable risk	
Sourcing Infrastructure	Flood event	Loss of infrastructure	Catastrophic	Rare	Medium (6)	Flood Mitigation (levee)	Moderate	Rare	Low (3)	Uncertain		
	Maintenance and repair of raw water main	Bacteria	Catastrophic	Unlikely	High (10)	Mains repair procedure and treatment	Moderate	Rare	Low (3)	Reliable	J1 Draft procedure for reticulation repair. Current procedures are inadequate.	
	Power Outage	Disruption to supply	Moderate	Unlikely	Medium (6)	Elevated reservoir (limited backup) and Mobile Backup generator	Insignificant	Rare	Low (1)	Confident	Acceptable risk	
	Flood event	Loss of infrastructure	Catastrophic	Rare	Medium (6)	Flood Mitigation (levee)	Moderate	Rare	Low (3)	Uncertain		
		True Colour	Insignificant	Rare	Low (1)	On-site drawings showing valve	Insignificant	Rare	Low (1)	Reliable	J1: Draft and implement standard operating procedures and / or manual of operations. Current	
Treatment Plant	Bypass treatment plant	Turbidity	Insignificant	Unlikely	Low (2)	numbering, training and valve maintenance. Procedure for plant operations and	Insignificant	Rare	Low (1)	Reliable	manual of operations. Current Procedures are inadequate and do not cover specific operations.	
		Bacteria	Catastrophic	Unlikely	High (10)	maintenance and backwash.	Moderate	Rare	Low (3)	Reliable	J4 Operator requires training and handover process to be implemented.	
		True Colour	Insignificant	Rare	Low (1)	Operational monitoring, manual	Insignificant	Rare	Low (1)	Reliable	J1 Draft standard operating procedures and / or manual of	
	Alum under dose / Failure of Alum Dosing	Turbidity	Insignificant	Unlikely	Low (2)	adjustment Automated Turbidity and pH	Insignificant	Unlikely	Low (2)	Reliable	operations. Current Procedures ar inadequate.	
	Equipment	Bacteria	Catastrophic	Unlikely	High (10)	monitoring Telemetry alarms for critical	Moderate	Rare	Low (3)	Reliable	J4 Operator requires training and handover process to be implemented.	
	Alum over dosing	Alum	Moderate	Rare	Low (3)	level exceedance	Moderate	Rare	Low (3)	Uncertain		

Scheme Component / Sub-component	Hazardous Event	Hazard	Ma	ximum Risk		Existing Preventive Measures / Barriers.	R	esidual risk		Uncertainty	Comments/ Proposed Further Risk Reduction Actions	
Sub-component			Consequence	Likelihood	Risk level		Consequence	Consequence Likelihood Risk level				
	Hydrochloric Acid over / under dosing	Hydrochloric Acid	Insignificant	Rare	Low (1)	Automated pH monitoring and Telemetry alarms for critical level exceedance	Insignificant	Rare	Low (1)	Confident		
	Walkway Access over filtration tank	Harmful substances (not identified)	Catastrophic	Rare	Medium (6)	Restricted access, operator training.	Moderate	Rare	Low (3)	Uncertain		
	Over Chlorination	Chlorine	Moderate	Unlikely	Medium (6)	Automated Chlorine monitoring Telemetry alarms for dosing	Moderate	Rare	Low (3)	Estimate		
	Under Chlorination	Bacteria	Catastrophic	Unlikely	High (10)	failure	Catastrophic	Rare	Medium (6)	Estimate		
	Low residual chlorine in Elevated Reservoir	Chlorine	Moderate	Unlikely	Medium (6)	Tank automatically refills at 70% full in order to turn water over	Moderate	Rare	Low (3)	Uncertain		
	Failure of Disinfectant Dosing Pumps	Bacteria	Catastrophic	Unlikely	High (10)	Automated Chlorine monitoring Telemetry alarms for dosing failure	Catastrophic	Rare	Medium (6)	Estimate		
Disinfection	Power Outage	Disruption to supply	Moderate	Unlikely	Medium (6)	Elevated reservoir and Backup mobile generator	Insignificant	Rare	Low (1)	Confident	Acceptable risk	
Process	Chlorination By-products	Chlorate	Major	Possible	High (12)	Installation of calcium hypochlorite system Verification monitoring of Chlorates Automated chlorine monitoring	Major	Unlikely	Medium (8)	Estimate	J1 Draft standard operating procedures and / or operations manual.	
	pH >8	Chlorine	Moderate	Unlikely	Medium (6)	pH adjustment Automated monitoring of pH Telemetry alarms for critical level exceedance	Moderate	Unlikely	Medium (6)	Estimate	J1 Current Procedures are inadequate, Draft standard operating procedures and / or operations manual.	
	Insufficient contact time	Chlorine	Moderate	Unlikely	Medium (6)	Automated Chlorine monitoring Telemetry alarms for dosing failure	Moderate	Rare	Low (3)	Estimate	Acceptable risk	
Distribution System	Reticulation maintenance and repair	Bacteria	Catastrophic	Unlikely	High (10)	Mains repair procedure and Monitoring	Moderate	Rare	Low (3)	Uncertain	J1 Draft revised procedure for reticulation repair and monitor	
Whole of system	Flights carrying samples to lab delayed/cancelled	Logistical	Insignificant	Possible	Low (3)	Nil	Insignificant	Possible	Low (3)	Confident	Acceptable risk	

3.4.3 (b) Hazard Identification (and Risk Assessment) Team

The personnel responsible for the hazard identification and risk assessment process, their roles and responsibilities are detailed in the Table below.

Table 3.19 Hazard Identification and Risk Assessment Team

Typical Job Title for Key Personnel	What Role Did Each Person Play On the Team?	What Expertise and System Knowledge Did The Person Bring?
Manager of Engineering Services	Management of DWQMP Process, Risk Assessment Procedure & Chairing Risk Assessment Workshop	High level knowledge, risk assessment and identification, general engineering experience in the management of the systems
Engineer (Internal / External)	Author, Risk Assessment, Risk Assessment Workshop	Detailed knowledge of the system, water risk assessment and identification
Water Engineer (Internal / External)	Risk Assessment Workshop	Detailed knowledge of drinking water quality management, outside perspective, risk assessment and identification
Water / Technical Officers	Risk Assessment Workshop	Detailed knowledge of individual schemes, risk identification

3.5 Muttaburra Water Quality and Catchment Characteristics

Muttaburra water supply scheme is comprised of two artesian bores delivering water directly to reticulation. The source water is not treated prior to reticulation.

3.5.1 Water Quality Information

Water quality information for Muttaburra includes the following:

- (a) Summary
- (b) Interpolation

3.5.1 (a) Summary

Table 3.20 below summarises the available reticulated water quality for the Muttaburra water supply scheme.

Figure 3.107 to Figure 3.124 below show trends of the main parameters contained in Table 3.20 over the time period specified.

The responsibility for obtaining the water samples rests with the DWSP and samples are collected by the Water Officer monthly. Samples are sent to Queensland Health Scientific Services for analysis. The DWSP also samples and analyses drinking water for E. coli.

Table 3.20 Muttaburra Reticulated Water

Muttaburra Water Supply		Start Date	09/06/2010		End Date	e: 03/01/2	018				
Characteristic	Units	No. of		Sum	mary of Res	ults		Guideline Value			
		Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedances
Conductivity	uS/cm	150	542.000	450.340	430.000	13.538	469.100				
рН		150	8.360	7.758	7.460	0.302	8.002			≥6.5 & ≤ 8.5	0
Total Hardness	mg/L as CaCO 3	150	96.600	6.945	5.500	7.429	7.000				
Temporary Hardness	mg/L as CaCo₃	150	18.000	6.344	5.500	1.118	6.910			200	0
Alkalinity	mg/L CaCo₃	150	192.000	155.509	3.400	59.838	189.550				
Residual Alkalinity	meq/L	150	194.000	27.357	3.000	60.980	185.550				
Silica	mg/L	150	30.000	28.467	20.000	0.914	29.000			80	0
Total Dissolved Ions	mg/L	150	378.000	355.767	263.000	12.214	372.550				
Total Dissolved Solids	mg/L	150	600.000	276.680	247.000	27.299	285.550			600	0
True Colour	Hazen	150	68.000	10.057	0.500	10.117	26.550			15	37
Turbidity	NTU	150	13.000	0.723	0.500	1.070	1.000			5	1
pH (Saturation)*		150	8.900	8.867	7.900	0.100	8.900				
Saturation Index		150	0.500	-1.081	-1.400	0.204	-0.800				
Mole Ratio		150	8.900	1.898	1.300	0.592	2.000				
Sodium Absorption Ratio		150	18.000	16.549	-1.200	1.874	18.000				
Figure of Merit		150	2.000	0.015	0.000	0.163	0.000				
Sodium	mg/L	150	103.000	94.673	16.000	7.080	100.000			180	0
Potassium	mg/L	150	9.300	8.473	0.000	0.910	9.100				
Calcium	mg/L	149	94.000	2.772	1.900	7.512	2.360				
Magnesium	mg/L	150	8.900	0.265	0.200	0.708	0.300				
Hydrogen	mg/L	150	2.200	0.015	0.000	0.179	0.000				
Bicarbonate	mg/L	150	234.000	215.775	0.200	18.918	230.550				
Carbonate	mg/L	150	2.800	0.796	0.000	0.334	1.255				
Hydroxide	mg/L	150	212.000	1.413	0.000	17.252	0.000				
Chloride	mg/L	150	42.000	31.844	0.600	2.803	33.000			250	0
Fluoride	mg/L	149	0.525	0.239	0.000	0.046	0.280	1.5	0		

Muttaburra Water Supply	Ittaburra Water Supply Start 09/06/2010 End Date: 03/01/2018 Date										
Characteristic	Units	No. of		Sum	mary of Res	ults			Gu	uideline Value	
		Samples	Maximum Value	Average Value	Minimum Value	Std Dev	95 th Percentile	Health	Exceedances	Aesthetic	Exceedances
Nitrate	mg/L	150	31.000	0.455	0.250	2.502	0.250	50	0		
Sulphate	mg/L	150	0.500	0.498	0.200	0.024	0.500	500	0	250	0
Iron	mg/L	151	2.300	0.352	0.005	0.337	0.880			0.3	65
Manganese	mg/L	151	0.100	0.076	0.005	0.010	0.090	0.5	0	0.1	0
Zinc	mg/L	151	0.680	0.025	0.002	0.073	0.105			3	0
Aluminium	mg/L	151	0.080	0.025	0.000	0.006	0.025			0.2	0
Boron	mg/L	151	0.100	0.078	0.015	0.008	0.090	4	0		
Copper	mg/L	150	0.150	0.017	0.001	0.012	0.015	2	0	1	0
E. coli		165	0.000	0.000	0.000	0.000	0.000	0	0		

Table 3.21 Water quality complaints

Year	No of Water Quality Complaints	Water Quality Complaints per 1000 Connections	Main Reasons for Complaints	Likely Sources / Causes of Problems	Resolution of Problem				
2018	0	0							
2017	0	0							
2016	0	0							
2015									
2014	No	Data	Data not available						
2013		Dala							
2012									
2011	2	19.23							
2010	2	18.35							
2009	2	18.35							

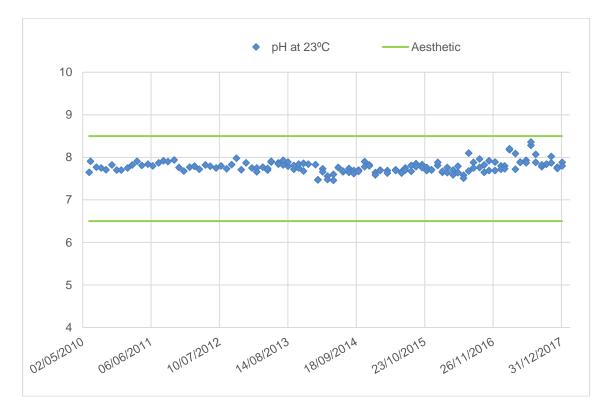
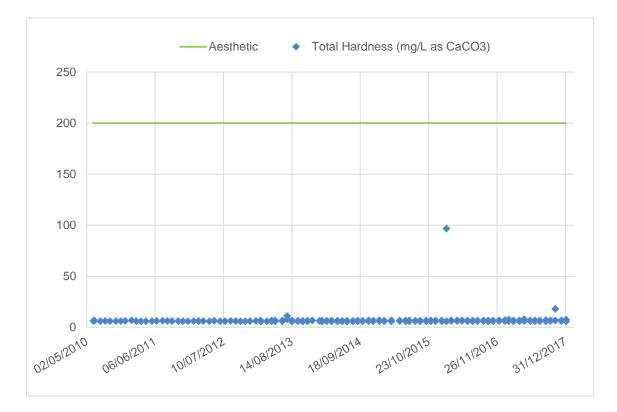
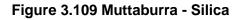
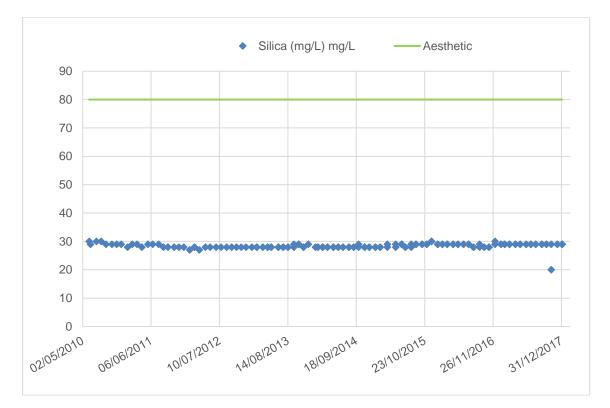
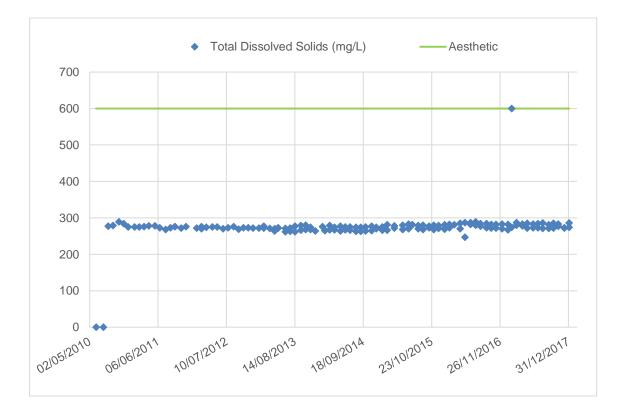
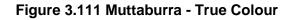
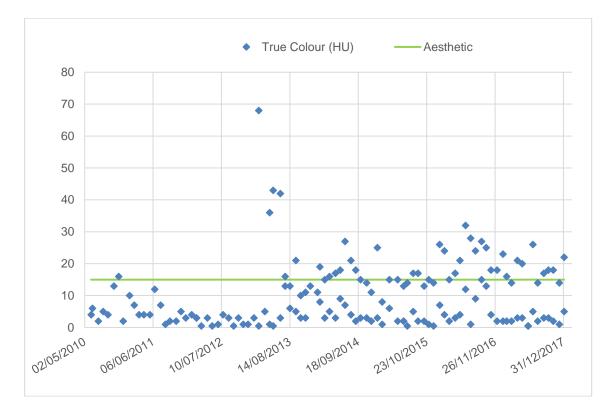
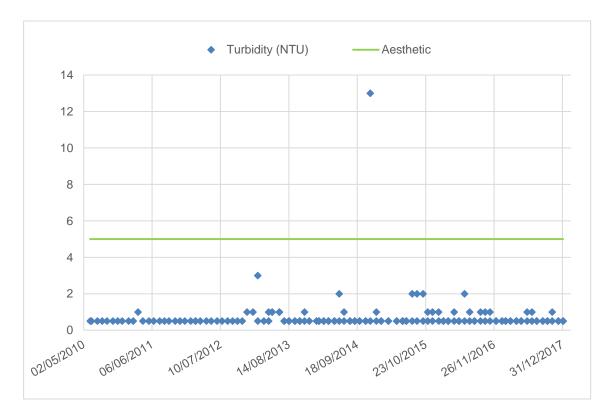
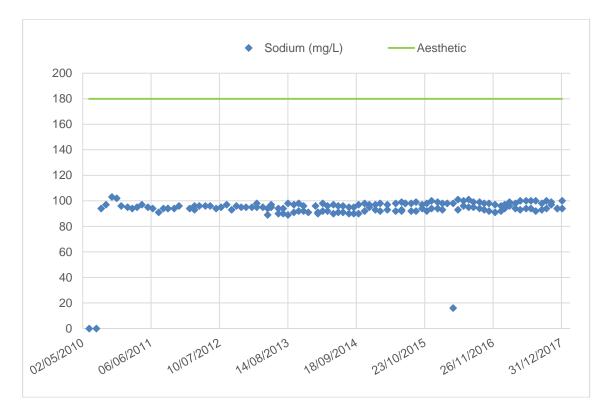




Figure 3.108 Muttaburra - Total Hardness


Figure 3.110 Muttaburra - Total Dissolved Solids



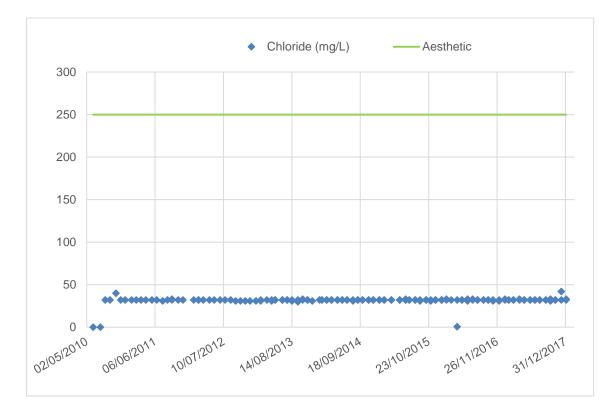

Figure 3.112 Muttaburra - Turbidity

Figure 3.114 Muttaburra - Chloride

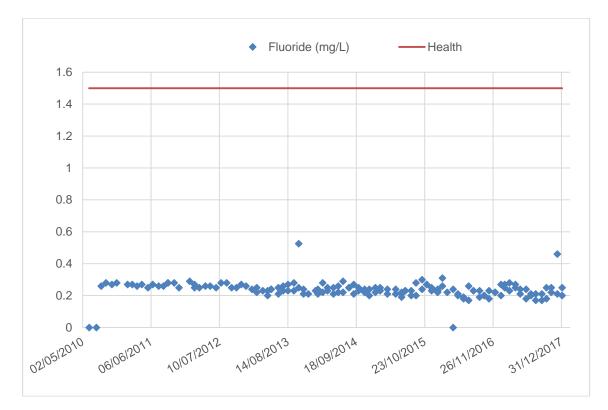
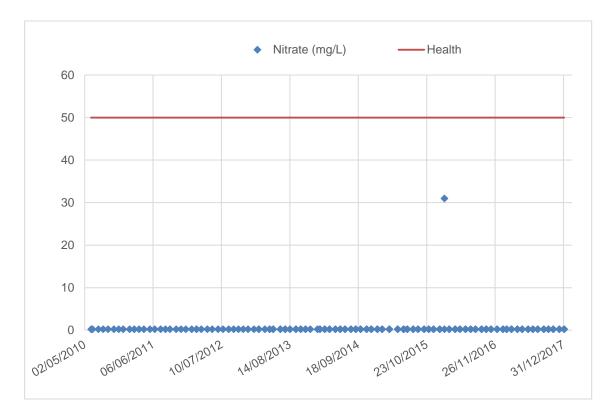



Figure 3.116 Muttaburra - Nitrate

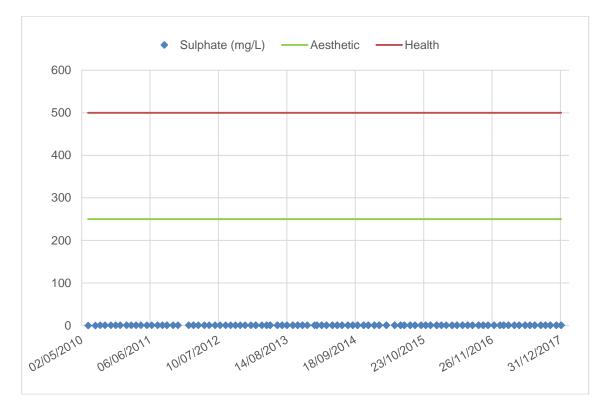
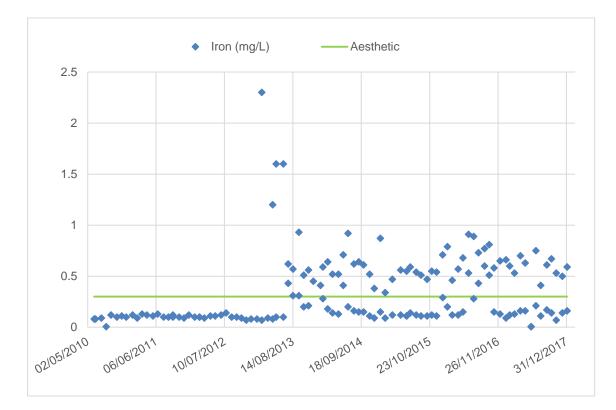
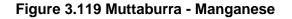
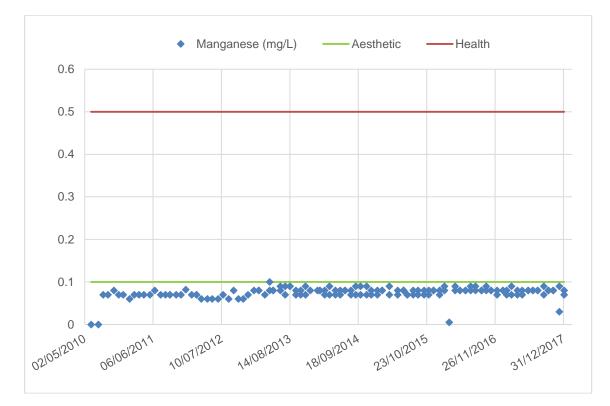
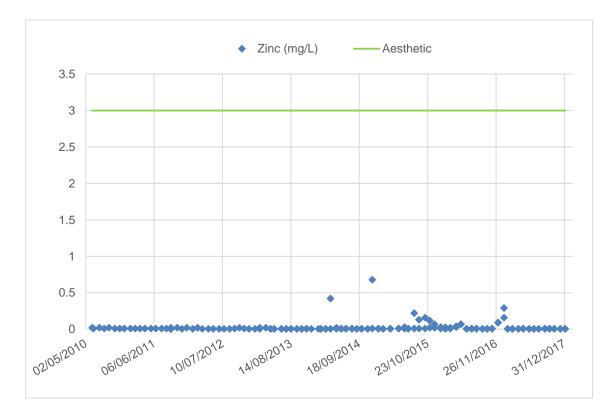
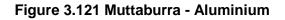
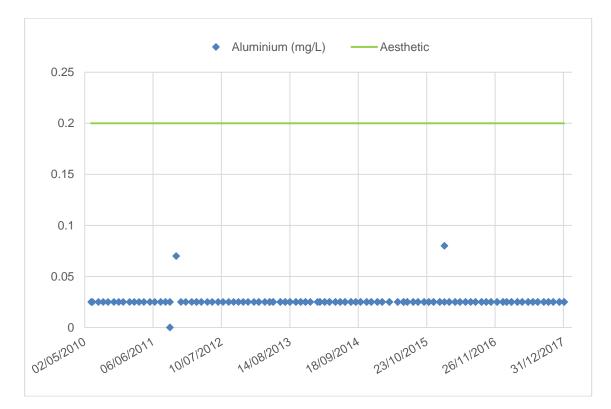
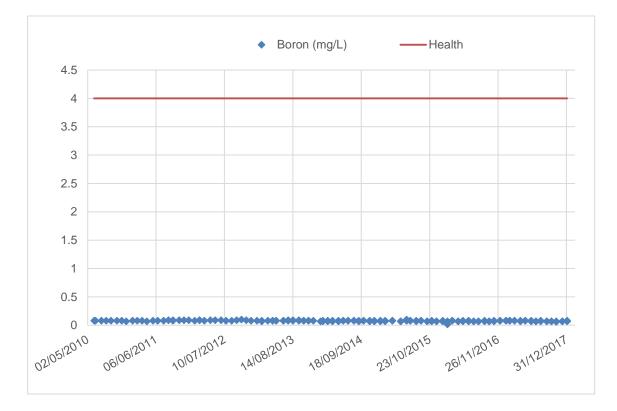
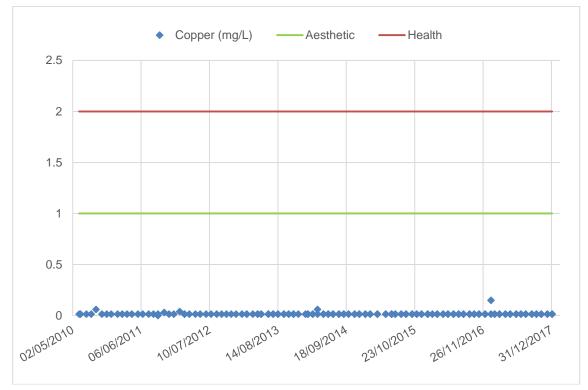




Figure 3.118 Muttaburra - Iron


Figure 3.120 Muttaburra - Zinc



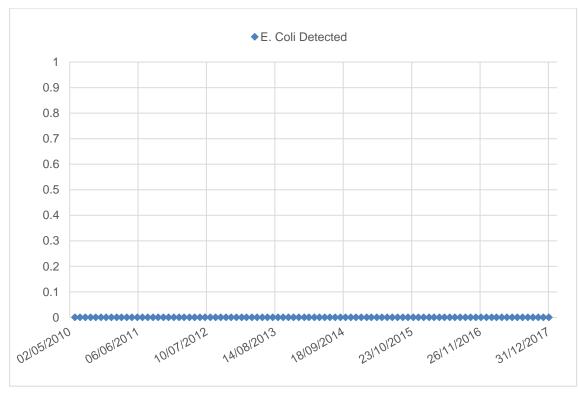


Figure 3.124 Muttaburra – E-Coli

3.5.1 (b) Interpretation

Table 3.20 above shows aesthetic guideline value exceedances²² for true colour and iron.

The following aesthetic characteristics were detected (highlighted show exceedances):

- pH
- Silica
- TDS
- True Colour
- Turbidity
- Sodium
- Chloride
- Fluoride
- Iron
- Manganese
- Copper

The following health characteristics were detected (highlighted shows exceedances):

- Fluoride
- Manganese
- Copper

Figure 3.111 provides a trend for the analysis of true colour, there was thirty-seven exceedances. The aesthetic guideline value is 15 HU. For true colour no health based guideline value is considered necessary. A maximum value of 68 HU, average value of 10 HU and a 95th percentile of 26.6 HU were determined. Up to 25 HU is acceptable were turbidity is low, while 15 HU is just noticeable in a glass.

Figure 3.111 provides a trend for the analysis of iron; there was sixty-five exceedances. A maximum value of 2.3 mg/l, average value of 0.352 mg/l and a 95th percentile value of 0.880mg/l have been determined. The aesthetic guideline value is 0.3mg/l. For iron there is insufficient data to set a guideline value based on health considerations. Iron occurs naturally in water, < 1mg/l but up to 100mg/l in oxygen depleted groundwater. The taste threshold is 0.3mg/l. High concentrations of iron may stain laundry and fittings with iron bacteria causing blockages, taste / odour and corrosion. Due to the high number of exceedances, iron bacteria could potentially pose an issue to the water supply.

While there was an aesthetic guideline value exceedance, there were no health guideline value exceedances²² recorded during the period summarised in Table 3.20.

Of one-hundred and sixty-five (165) samples analysed for E. coli there have been zero (0) E. coli colonies detected (see Figure 3.124).

²² As per the Australian Drinking Water Guidelines (2011)

3.5.2 Catchment Characteristics

Muttaburra is located 119 km north of Longreach and 85 km northwest of Aramac. Muttaburra is located on the western side of the Thompson River and in the Thompson River catchment. Muttaburra is located on gently undulating black soil terrain and is prone to flooding.

Muttaburra is located in the prominent Central Western Queensland beef and wool producing area. Whilst cattle and sheep grazing are the main industries, road infrastructure construction and maintenance also contributes significantly to provide a stable employment base for the area. Tourism is also a significant industry within the town with Muttaburra hosting the Flock Eye Show. Muttaburra is also home to the Doctor Arratha Memorial Museum,

The average annual rainfall for Muttaburra is 424.6mm²³. With the majority of the rain falling between late December and late March with little or no rainfall during any other period. The mean maximum temperature is 31.5°C²³ although temperatures often exceed the 40°C mark during the summer months. Muttaburra has a current population of 88 permanent residents and has a current demand of 0.624 Ml/day. The town and water infrastructure is not prone to flooding.

The Great Artesian Basin (GAB) covers approximately one-fifth of the Australian continent and contains 8.7 x 10⁶ GL of groundwater in the Jurassic sandstone aquifers. It is the largest groundwater and artesian basin in the world. The basin is located under mostly arid and semi-arid landscapes to the west of the Great Dividing Range. The GAB supports a wide array of activities such as pastoral, agriculture and mining as well as the rural communities, cultural and tourism activities. In the Barcaldine regional area the capping of existing free flowing aquifers has improved the pressure in the main town aquifers.

The GAB is recharged by rainfall and stream flow infiltrating into the exposed sandstone on the edges of the basin. One of the first drilling of the GAB occurred in 1887 in Barcaldine, comprising of a free flowing artesian Bore. Currently there are two supply bores in Muttaburra. Bore No 1 (RN 308) and Bore No 2 (RN146624). Figure 3.54 above shows the recharge, discharge and flow of the GAB and Barcaldine's relative location in relation to the GAB.

The Town Bores are located within close proximity and are located at the western end of Sword Street, Bore No1 was put down in November 1901 and Bore No 2 in 2013. The bores are 825.1m deep and 834 respectfully. Bore No 1 was reconditioned in 1950 restoring the flow to 18.7 l/s.. The bores has a free flowing yield of 18.7 l/s and 29l/s respectfully. The bores deliver water directly into reticulation without pumping. Access to the bores is limited to authorised personnel only by way of security fencing and the bore headwork's are sealed against the possibility of deliberate contamination. Appendix B Figure M-2012-007 shows the bore location and water reticulation layout on an aerial photo of the town. Appendix C contains a copy of the bore card reports obtained from Department of Environmental & Resource Management.

Muttaburra sewerage collection scheme is comprised of a conventional gravity mains collection system with pumped rising main to a trickling filter treatment plant. The treatment plant is comprised of one imhoff tank, four effluent holding lagoons, sludge drying beds and an artificial wetland. The ground water sources show no indication of contamination from the sewage treatment plant. The artesian bore has been annuli sealed off to prevent contamination from surface water leachate. Currently effluent is not reused however this may be reviewed in the future.

²³ 30 year mean at Longreach Aerodrome (nearest available climate statistics)

3.5.3 Hazard Identification

The hazards and hazardous events and their sources that adversely affect water quality are documented in Table 3.22 below and include those affecting:

- Catchment
- Sourcing infrastructure
- Treatment plants (where applicable)
- Disinfection process(es) (where applicable)
- Distribution system

3.5.3 (a) Identifying and documenting hazards and hazardous events

The hazards and hazardous events were identified using data contained in the plan and following site visits and a risk assessment workshop which was conducted on 8 and 9 November 2011. A recent risk assessment workshop was conducted in December 2017 prior to amendment of the plan;

- Section 2.5 Muttaburra Water Supply Scheme
- Section 3.5.1 Water quality information
- Section 3.5.2 Catchment Characteristics

Table 3.22 Muttaburra Hazard Identification, Risk Assessment and Uncertainty

Scheme Component / Sub-	Hazardous Event	Hazard	Max	kimum Risk		Existing Preventive Measures / Barriers.			Uncertainty	Comments/ Proposed Further Risk Reduction	
component			Consequence	Likelihood	Risk level		Consequence	Likelihood	Risk level		Actions
	Sewage and septic system discharges, agricultural run-off	Bacteria	Moderate	Rare	Low (3)	Nil	Moderate	Rare	Low (3)	Reliable	
Bore	Hazard that arises from the	True Colour	Insignificant	Rare	Low (1)	Nil	Insignificant	Rare	Low (1)	Reliable	Acceptable risk, continue to monitor for exceedances
	natural geological processes in the aquifer.	Iron	Insignificant	Rare	Low (1)	Nil	Insignificant	Rare	Low (1)	Reliable	
Sourcing	Accidental or intentional contamination	Harmful substances (not identified)	Catastrophic	Rare	Medium (6)	Nil	Catastrophic	Rare	Medium (6)	Uncertain	ABM1 Operational & Maintenance Procedures
Infrastructure	Reliability of supply	Loss of pressure in reticulation	Moderate	Rare	Low (3)	Nil	Moderate	Rare	Low (3)	Uncertain	Acceptable risk
Treatment Plant						ticulated Water Untreated					
Disinfection Process Reticulated Water Not Disinfected											
	Reticulation maintenance and repair	Bacteria	Moderate	Rare	Low (3)	Mains repair procedure and Monitoring	Moderate	Rare	Low (3)	Uncertain	ABM1 Operational & Maintenance Procedures
Distribution System	Expired Mains	Bacteria	Catastrophic	Unlikely	High (10)	Mains replacement priority layout plan to replace expired mains.	Catastrophic	Unlikely	High (10)	Uncertain	ABM2 Replace ageing mains in accordance with asset replacement program. Continue to apply for internal & external funding.
Whole of System	Flights carrying samples to lab delayed/cancelled	Logistical	Insignificant	Possible	Low (3)	Nil	Insignificant	Possible	Low (3)	Confident	Acceptable risk

3.5.3 (b) Hazard Identification (And Risk Assessment) Team

The personnel responsible for the hazard identification and risk assessment process, their roles and responsibilities are detailed in the Table below.

Table 3.23 Hazard Identification and Risk Assessment Team

Typical Job Title for Key Personnel	What Role Did Each Person Play On the Team?	What Expertise and System Knowledge Did The Person Bring?
Manager of Engineering Services	Management of DWQMP Process, Risk Assessment Procedure & Chairing Risk Assessment Workshop	High level knowledge, risk assessment and identification, general engineering experience in the management of the systems
Engineer (Internal / External)	Author, Risk Assessment, Risk Assessment Workshop	Detailed knowledge of the system, water risk assessment and identification
Water Engineer (Internal / External)	Risk Assessment Workshop	Detailed knowledge of drinking water quality management, outside perspective, risk assessment and identification
Water / Technical Officers	Risk Assessment Workshop	Detailed knowledge of individual schemes, risk identification

4 Assessment of Risks

The plan details the risk assessment methodology used for the scheme in Section 4.1 below. Section 4.2 explains how the risks were assessed. Section 4.3 tabulates the relevant stakeholders in the risk assessment process.

4.1 Methodology

The methodology adopted for the risk assessment is described below. The methodology is based on the methodology exampled in the document "Preparing a Drinking Water Quality Management Plan Guideline Supporting Information" (September 2010).

Table 4.1 below shows the qualitative measures of likelihood that was adopted in the risk assessment.

Likelihood	Descriptors
Rare	Occurs less than or equal to once every 5 years
Unlikely	Occurs more often than once every 5 years and up to once per year
Possible	Occurs more often than once per year and up to once a month (12/yr.)
Likely	Occurs more often than once per month (12/yr.) and up to once per week (52/yr.)
Almost Certain	Occurs more often than once per week (52/yr.)

Table 4.1 Measures of Likelihood Utilised in the Risk Assessment

Table 4.2 below shows the qualitative measures of consequence that was adopted in the risk assessment.

Consequence	Descriptors
Insignificant	Isolated exceedance of aesthetic parameter with little or no disruption to normal operation
Minor	Potential local aesthetic, isolated exceedance of chronic health parameter
Moderate	Potential widespread aesthetic impact or repeated breach of chronic health parameter
Major	Potential acute health impact, no declared outbreak expected
Catastrophic	Potential acute health impact, declared outbreak expected

Table 4.3 below shows the degrees of uncertainty adopted for the risk assessment. The degree of uncertainty for the scheme varies from confident for Barcaldine Water Supply Scheme to Reliable for Alpha, Aramac, Jericho and Muttaburra Water Supply Schemes. Some of the risks assessed for all the Water Supply Schemes remain an estimate or uncertain.

Table 4.4 below shows the risk analysis matrix utilised, detailing the various levels of risk that was adopted in the risk assessment.

Level of Uncertainty	Definition
Certain	There is 5 years of continuous monitoring data, which has been trended and assessed, with at least daily monitoring; or The processes involved are thoroughly understood.
Confident	There is 5 years of continuous monitoring data, which has been collated and assessed, with at least weekly monitoring or for the duration of seasonal events; or There is a good understanding of the processes involved.
Reliable	There is at least a year of continuous monitoring data available, which has been assessed; or There is reasonable understanding of the processes involved.
Estimate	There is limited monitoring data available; or There is limited understanding of the processes involved.
Uncertain	There is limited or no monitoring data available; or The processes are not well understood.

Table 4.4 Risk Analysis Matrix – Level of Risk

Likelihood	Consequence							
Likeimood	Insignificant	Minor	Moderate	Major	Catastrophic			
Almost certain	Medium	High	High	Extreme	Extreme			
	(6)	(10)	(15)	(20)	(25)			
Likely	Medium	Medium	High	High	Extreme			
	(5)	(8)	(12)	(16)	(20)			
Possible	Low	Medium	Medium	High	High			
	(3)	(6)	(9)	(12)	(15)			
Unlikely	Low	Low	Medium	Medium	High			
	(2)	(4)	(6)	(8)	(10)			
Rare	Low	Low	Low	Medium	Medium			
	(1)	(2)	(3)	(5)	(6)			

Table 4.5 Defined Acceptable Risk Levels

Low risk	acceptable	manage for continuous improvement
Moderate risk	unacceptable	Implement short term measures, longer term risk reduction measures may be implemented within a reasonable timeframe
High risk	unacceptable	Implement short term measures immediately, longer term risk reduction measures need to be a priority
Very high	unacceptable	Implement short term measures immediately, implementation of longer term risk reduction measures given top priority

Table 4.5 above details the acceptable risk levels for the water supply schemes.

4.1.1 Site Visits, Interviews and Risk Assessment Workshop

On 8 November site visits to Aramac and Muttaburra Water Supply Schemes were conducted and attended by Mike Donald, Manager of Engineering Services – BRC, Patrick Cullivan – George Bourne & Associates and Peter Robinson – Wide Bay Water. Bob Trueman – Technical Officer Aramac gave a site tour and was interviewed in Aramac. Due to the distances involved Bob was not requested to attend the Risk Assessment Workshop however his input from the interview was included in the Risk Assessment Workshop. Gary Ballard – Water Officer Muttaburra gave a site tour and was interviewed in Muttaburra. Due to the distances involved Gary was not requested to attend the Risk Assessment Workshop however his input from the site tour and interview was included in the Risk Assessment Workshop however his input from the site tour and interview was included in the Risk Assessment Workshop.

On 9 November site visits to Alpha and Jericho Water Supply Schemes were conducted and attended by Mike Donald, Manager of Engineering Services – BRC, Patrick Cullivan – George Bourne & Associates and Peter Robinson – Wide Bay Water. Des Lamb – Technical Officer Alpha and Jericho gave a site tour and was interviewed in Alpha and Jericho. On 10 November 2012 Des attended the Risk Assessment Workshop held at the Offices of Barcaldine Regional Council and gave his input to the Risk Assessment Team.

On 10 November a site visit to Barcaldine Water Supply Scheme was conducted and attended by Mike Donald, Manager of Engineering Services – BRC, Patrick Cullivan – George Bourne & Associates and Peter Robinson – Wide Bay Water. Brett Harvey – Water Officer Barcaldine gave a site tour and was interviewed in Barcaldine. On 10 November 2012 Brett attended the Risk Assessment Workshop held at the Offices of Barcaldine Regional Council and gave his input to the Risk Assessment Team.

On the 7 December 2017 a Risk Assessment Workshop was conducted for the drinking water supply schemes within the region. Attendees of the Risk Assessment Workshop included Councils Manager of Engineering Services , the Technical Officers from each scheme and Consultant Engineer and Environmental Scientist from GBA. The Risk Assessment Workshop was conducted in collaboration with the DWQMP Regular Review process due prior to 31 December 2017. In addition to the Regular Review a Third Party Audit was conducted on the DWSP DWQMP which was completed by Bligh Tanner on the 12 October 2017. The Third Party Audit provided information for the risk assessment process, providing an independent appraisal of the DWQMP and the schemes, as such the findings of the Third Party Audit were taken into consideration in the Risk Assessment Workshop.

The methodology chosen is relevant to the public health risks associated with drinking water supplies. Every effort has been made to apply the chosen methodology consistently across the five drinking water services.

4.2 Assessment of Risk

Details of the risk assessment results for each scheme's identified hazards and hazardous events include:

- maximum risk level or equivalent process (i.e. without existing barriers in place, eg: no treatment and/or disinfection);
- existing preventive measures including multiple barriers (i.e. treatment process steps)
- residual risk level (i.e. with existing barriers in place for example, treatment and/or disinfection); and
- any uncertainties.

The following sections will discuss each of these dot points in further detail.

4.2.1 Assessment of Maximum Risk

For all hazards, maximum risk (e.g.: the risk from an uncontrolled hazard) was first assessed. Where there was insufficient data or information to complete a reliable assessment, this was highlighted as an uncertainty and discussed further in the Risk Management Improvement Program in Section 5.4 below.

4.2.2 Existing preventative measures/barriers

All existing preventative measures are listed in the Risk Assessment. Existing preventative measures include all actions, barriers or measures currently in place to reduce the maximum risk. They include all treatment steps, active measures that protect raw water quality prior to treatment and measures to protect treated water quality.

4.2.3 Residual risk

The residual risk is determined once existing preventive measures have been applied. Residual risk is the level of risk a particular hazard is assessed as posing to the safety of the drinking water once the existing preventative measure/s have been applied.

Residual risk is determined using the same methodology (eg: likelihood and consequence descriptors) as the initial maximum risk assessment; however changes to the assessed likelihood (or consequence) should result in a lower resultant risk level.

4.3 Key Stakeholders

Stakeholder	Contact Name and Details	Rationale for engagement and how engagement occurred
Barcaldine Regional Council	Rick Rolfe, Manager of Engineering Services P (07) 4651 5625 E: <u>meng@barc.qld.gov.au</u>	Responsible for managing Engineering Services for Barcaldine Regional Council Site Visits & Risk Assessment Workshop Management of DWQMP Preparation
	Des Lamb, Technical Officer Alpha & Jericho Water Supplies	Site Visits & Risk Assessment Workshop
	TBA, Technical Officer Aramac Water Supply	Site Visits & Risk Assessment Workshop
	Brett Harvey, Water Officer Barcaldine Water Supply	Site Visits & Risk Assessment Workshop
	Nick Ballard, Water Officer Muttaburra Water Supply	Site Visits & Risk Assessment Workshop
Consultants	Patrick J Cullivan George Bourne & Associates P (07) 4651 5177 E <u>pcullivan@gbassoc.com.au</u>	Author of Barcaldine DWQMP Site Visits & Risk Assessment Workshop

Table 4.6 Stakeholders – Risk Assessment

Stakeholder	Contact Name and Details	Rationale for engagement and how engagement occurred
	Peter Robinson Widebay Water <u>peter@widebaywater.qld.gov.au</u>	External Expertise Site Visits & Risk Assessment Workshop
	William Green George Bourne & Associates P (07) 4651 5177 E <u>wgreen@gbassoc.com.au</u>	Amendment of DWQMP

170199

5 Managing Risks

Alpha and Jericho's raw water requires treatment prior to reticulation and both schemes undergo similar treatment processes. Aramac, Barcaldine and Muttaburra source their water from relatively deep artesian bores and the water quality is suitable for reticulation without treatment.

Due to the similarities and differences in the scheme types Alpha and Jericho are considered separately to Aramac, Barcaldine and Muttaburra for the purpose of managing risks.

Managing risks are discussed in the following sections below:

- 5.1 Risk Management Measures
- 5.2 Operation and maintenance procedures
- 5.3 Management of Incidents and Emergencies
- 5.4 Risk Management Improvement Program
- 5.5 Information Management

5.1 Risk Management Measures

Existing and proposed preventative risk management measures are detailed in 5.1.1 for Alpha and Jericho and 5.1.2 below for Aramac, Barcaldine and Muttaburra.

5.1.1 Alpha and Jericho Existing and Proposed Preventative Measures

Table 5.1 and Table 5.2 below provide details of the existing and proposed preventative measures for Alpha and Jericho. Proposed measures are included in the Risk Management Improvement Program (RMIP) in Table 5.9 and Table 5.10 for Alpha and Jericho below.

Table 5.1 Alpha Existing and Proposed Preventative Measur

Scheme Component / Sub- component	Hazard	Hazardous event/s	What is/are the existing preventative measure/s?	Which risk factor/s does the existing preventative measure/s impact on	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Organisations
	Bacteria	Septic system discharges	Chlorination, Flocculation, Clarification and filtration Automated Chlorine monitoring Telemetry alarms for dosing failure	Likelihood & Consequence	Effective. Determined by the fact that E-coli has not been detected within the system since monitoring begun and recent improvements in treatment process reflected in monitoring results	Yes – Iow risk	Continue to monitor for E.coli. AL1 : Draft standard operating procedures and / or manual of operations. AL2 Commence sampling source water in addition to treated water.	
Source	Substances (not identified)	Flood event	Chlorination, Aeration, Flocculation, Clarification and filtration Automated, Turbidity and pH monitoring Telemetry alarms for critical level exceedance	Consequence	Effective, however it is uncertain what the effect of flooding will have on private bores and if this will affect council bores. Spikes in colour and turbidity levels have been observed during flooding.	No – medium risk	 AL3 Identify effect of flooding on bore water quality considering private bores which exist on the flood plain which may not be capped. AL 4 Identify uncapped bores under councils jurisdiction and cap bores to reduce risk of pathogenic ingress. AL1: Draft and implement procedure for flood event monitoring of source water to detect bacterial contaminants. 	uncil
	Hazard that arises from the natural geological processes in the aquifer.	True Colour Turbidity	Chlorination, Aeration, Flocculation, Clarification and filtration	Likelihood	Effective as True Colour and Turbidity is generally within a suitable range (for effective disinfection)	Yes – low risk	Acceptable risk, continue to monitor for exceedances.	Barcaldine Regional Council
		Nitrates	Nil	N.A.	N.A.	No – medium risk	AL2 Commence testing source water in addition to treated water.	line Re
	Disruption to supply	Power outage	Elevated reservoir (limited backup) and Backup generator	Consequence	Effective	No – low risk	Acceptable risk	3arcalc
	Loss of Infrastructure	Loss of infrastructure	Critical Infrastructure constructed above flood level	Consequence	Effective	No – low risk	Acceptable risk	ш
Sourcing infrastructure	Bacteria	Ingress contaminated run-off from nearby uncapped bores	Chlorination, Aeration, Flocculation, Clarification and filtration	Consequence	Effective, however town water supply is at risk to contamination with current status	No - high risk	AL 4 Identify uncapped bores under councils jurisdiction and cap bores to reduce risk of pathogenic ingress.	
	Bacteria	Maintenance and repair of raw water main	Mains flushing and Chlorination, Aeration, Flocculation, Clarification and filtration	Likelihood & Consequence	Effective, however current procedures are inadequate	Yes – Iow risk	AL1 Draft procedure for reticulation repair. Current procedures are inadequate.	
	Disruption to supply	Power outage	Elevated reservoir (limited backup) and Backup generator	Consequence	Effective	No – low risk	Acceptable risk	
	Loss of Infrastructure	Flood event	Critical Infrastructure constructed above flood level	Consequence	Effective	No – low risk	Acceptable risk	
Treatment Plant & Reservoirs	True Colour, Turbidity and Bacteria	Bypass treatment plant	On-site drawings showing valve numbering, training and valve maintenance. Procedure for plant operations and maintenance and backwash.	Likelihood & Consequence	Effective, however current procedures are inadequate	Yes – Iow risk	AL1: Draft and implement standard operating procedures and / or manual of operations. Current Procedures are inadequate and do not cover specific operations.	

Scheme Component / Sub- component	Hazard	Hazardous event/s	What is/are the existing preventative measure/s?	Which risk factor/s does the existing preventative measure/s impact on	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Organisations
							AL5 Operator requires training and handover process to be implemented.	
	True Colour, Turbidity and Bacteria Alum	Chemical over / under dose affecting treatment Alum under dose / Failure of Alum Dosing Equipment Alum over dosing	Operational monitoring, manual adjustment. Automated, Turbidity and pH monitoring Telemetry alarms for critical level exceedance	Likelihood & Consequence	Effective however reliant on manual intervention. Determined by the fact that E-coli has not been detected within the system since monitoring. Current procedures are inadequate	No – low risk	AL1 Draft standard operating	
	Hydrochloric Acid	Hydrochloric over / under dosing	Nil	N.A.	N.A.	No – low risk	procedures and / or manual of operations. Current Procedures	
	Substances (not identified)	Accidental Contamination	Restricted access, operator training.	Consequence	Current procedures are inadequate	No – low risk	are inadequate. AL5 Operator requires training and	
	Chlorine	Over Chlorination		Likelihood	Effective	No – Low Risk	handover process to be implemented.	
	Bacteria	Under Chlorination Failure of disinfectant dosing pumps	Automated Chlorine monitoring Telemetry alarms for dosing failure	Likelihood	Upgrading of disinfection system and improved management has provided consistent results	No – Medium Risk		
	Chlorine	Low residual chlorine in Elevated Reservoir	Tank automatically refills at 70% full in order to turn water over	Likelihood	Uncertain as chlorine residual is not monitored.	No – Low Risk (uncertain)		
Disinfection Process	Disruption to supply	Power outage	Elevated reservoir (limited backup) and Backup generator	Consequence	Effective	Yes – low risk	Acceptable risk	
Process	Chlorate	Disinfection by- products	Installation of calcium hypochlorite system Verification monitoring of Chlorates Automated chlorine monitoring	Likelihood & Consequence	Effective Upgrading of disinfection system has decreased chlorate levels	No – Medium Risk	AL1 Draft standard operating procedures and / or operations manual.	
	Chlorine	pH >8	Automated pH, Chlorine monitoring	Likelihood	Effective	Yes – Low risk	Acceptable Risk	
-	Bacteria	Insufficient contract time	Automated pH, Chlorine monitoring Telemetry alarms for dosing failure	Likelihood & Consequence	Currently there is no operational monitoring of chlorine residual and current procedures are inadequate.	Yes – Low risk	Acceptable Risk	
Distribution System	Bacteria	Reticulation maintenance and repair	Mains flushing procedure and Monitoring	Likelihood & Consequence	Effective, however current procedures are inadequate	No – Iow risk (Uncertain)	AL1 Draft revised procedure for reticulation repair and monitor	

Table 5.2 Jericho Existing and Proposed Preventative Measures

Scheme Component / Sub- component	Hazard	Hazardous event/s	What is/are the existing preventative measure/s?	Which risk factor/s does the existing preventative measure/s impact on	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Organisations
Source	Bacteria	Septic system discharges	Chlorination, Flocculation, Clarification and filtration	Likelihood & Consequence	Effective however reliant on manual intervention. Determined by the fact that E-coli has not been detected within the system since monitoring begun.	Yes – low risk	Continue to monitor for E.coli. J 1: Draft standard operating procedures and / or manual of operations. J 2 Commence sampling source water in addition to treated water.	
	Substances (not identified)	Flood event	Chlorination, Aeration, Flocculation, Clarification and filtration	Consequence	Effective, however it is uncertain what the effect of flooding will have on private bores and if this will affect council bores. Spikes in colour and turbidity levels have been observed during flooding.	No – medium risk	 J 3 Identify effect of flooding on bore water quality considering private bores which exist on the flood plain which may not be capped. J 1: Draft and implement procedure for sample collection to include climate data during sample collection 	
	Hazard that arises from the natural geological processes in the aquifer.	True Colour Turbidity	Chlorination, Aeration, Flocculation, Clarification and filtration	Likelihood	Effective as True Colour and Turbidity is generally within a suitable range (for effective disinfection)	Yes – low risk	Acceptable risk, continue to monitor for exceedances. J2 Commence testing source water in addition to treated water.	
	Disruption to supply	Power outage	Elevated reservoir (limited backup) and Backup portable generator	Consequence	Effective	No – low risk	Acceptable risk	
Sourcing infrastructure	Loss of Infrastructure	Flood event	Critical Infrastructure constructed inside levee (flood mitigation)	Consequence	Effective	No – low risk	Acceptable risk	
	Bacteria	Maintenance and repair of raw water main	Mains flushing and Chlorination, Aeration, Flocculation, Clarification and filtration	Likelihood & Consequence	Effective, however current procedures are inadequate	Yes – low risk	J 1 Draft procedure for reticulation repair. Current procedures are inadequate.	
	Disruption to supply	Power outage	Elevated reservoir (limited backup) and Backup generator	Consequence	Effective	No – Iow risk	Acceptable risk	
	Loss of Infrastructure	Flood event	Critical Infrastructure constructed inside levee (flood mitigation)	Consequence	Effective	No – Iow risk	Acceptable risk	
Treatment Plant & Reservoirs	True Colour, Turbidity and Bacteria	Bypass treatment plant	On-site drawings showing valve numbering, training and valve maintenance. Procedure for plant operations and maintenance and backwash.	Likelihood & Consequence	Effective, however current procedures are inadequate	Yes – Iow risk	 J 1: Draft and implement standard operating procedures and / or manual of operations. Current Procedures are inadequate and do not cover specific operations. J 4 Operator requires training and handover process to be 	ouncil
	True Colour, Turbidity and Bacteria Alum	Chemical over / under dose affecting treatment Alum over dosing	Operational monitoring, manual adjustment. Automated Turbidity and pH monitoring Telemetry alarms for critical level exceedance	Likelihood & Consequence	Effective however reliant on manual intervention. Determined by the fact that E-coli has not been detected within the system since monitoring begun. Current procedures are inadequate	No – low risk	 implemented. J 1 Draft standard operating procedures and / or manual of operations. Current Procedures are inadequate. J 4 Operator requires training and handover process to be implemented. 	Barcaldine Regional Council

Scheme Component / Sub- component	Hazard	Hazardous event/s	What is/are the existing preventative measure/s?	Which risk factor/s does the existing preventative measure/s impact on	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Organisations
	Hydrochloric Acid Hydrochloric over / under dosing Automated pH monitoring Telemetry alarms for critical level exceedance			N.A.	N.A.	No – low risk		
	Low chlorine reserve in reservoir	Contamination	Vermin proofing	Likelihood	Effective	Yes – low risk		
	Substances (not identified)	Accidental Contamination	Restricted access, operator training.	Consequence	Current procedures are inadequate	No – low risk		
	Chlorine	Over Chlorination		Likelihood	Effective	No – Low Risk		
	Bacteria	Under Chlorination Failure of disinfectant dosing pumps	Automated Chlorine monitoring Telemetry alarms for dosing failure	Likelihood	Upgrading of disinfection system and improved management has provided consistent results.	No – Medium Risk		
Disinfection	Chlorine	Low residual chlorine in Elevated Reservoir	Tank automatically refills at 70% full in order to turn water over	Likelihood	Uncertain as chlorine residual is not monitored.	No – Low Risk (uncertain)		
Process	Disruption to supply	Power outage	Elevated reservoir (limited backup) and Backup generator	Consequence	Effective	No – low risk	Acceptable risk	
	Chlorate	Disinfection by- products	Installation of calcium hypochlorite system Verification monitoring of Chlorates Automated chlorine monitoring	Likelihood & Consequence	Effective Upgrading of disinfection system has decreased chlorate levels	No – Medium Risk	J 1 Draft standard operating procedures and / or operations manual.	
	Chlorine	pH >8	Automated pH, Chlorine monitoring Telemetry alarms for dosing failure	Likelihood	Effective	Yes – Low risk	Acceptable Risk	
	Bacteria	Bacterial contamination	Automated monitoring, Operational monitoring,Disinfection	Likelihood & Consequence	Effective	No – low risk (Estimate)	Acceptable Risk	
Distribution System	Bacteria	Reticulation maintenance and repair	Mains flushing procedure and Monitoring	Likelihood & Consequence	Effective, however current procedures are inadequate	No – low risk (Uncertain)	J 1 Draft revised procedure for reticulation maintenance and repair.	

5.1.2 Aramac, Barcaldine and Muttaburra Proposed Preventative Measures

Table 5.3 provides details of the existing and proposed preventative measures for Barcaldine, Aramac and Muttaburra. Proposed measures are included in the RMIP in Table 5.11 below.

Table 5.3 Aramac Existing and Proposed Preventative Measures ²⁴
--

Scheme Component / Sub-component	Affected Scheme	Hazard	Hazardous event/s	What is/are the existing preventative measure/s?	Which risk factor/s does the existing preventative measure/s impact on	How effective is/are the existing preventative measure/s & on what basis has this been determined?	Is the level of residual risk acceptable	Proposed measures to reach an acceptable level or residual risk	Responsible Organisations
Sourcing Infrastructure	Barcaldine Muttaburra	Harmful substances (not identified)	Accidental or intentional contamination	Chain-link fencing and locked gates. Reservoir roof lids.	N.A.	Uncertain – current procedures are inadequate.	No – medium risk	ABM1 Operational & Maintenance Procedures	
	Barcaldine Muttaburra Aramac	Disruption to supply ²⁵	Power outage	Back-up generator (Barcaldine)	Consequence & Likelihood	Effective during short power outages	Yes – low risk	N/A	=
Distribution System	Aramac Barcaldine Muttaburra	Bacteria	Reticulation maintenance and repair	Mains flushing procedure and Monitoring	Consequence	Effective however current procedures are inadequate. Determined by the fact that E-coli has not been detected within the system since monitoring begun	No – medium risk	ABM1 Operational & Maintenance Procedures	Barcaldine Regional Council
	Aramac Muttaburra	Bacteria	Expired Mains	Mains replacement priority layout plan to replace expired mains.	Likelihood	Uncertain condition of pipes is not fully understood	No – high risk	ABM2 Replace ageing mains in accordance with asset replacement program. Continue to apply for internal & external funding.	Barc
	Aramac	Bacteria	Dead ends	Routine flushing.	Likelihood	Effective however current procedures are inadequate.	No – Medium Risk	ABM3 Create flushing schematic layout to go with the SOP Air scouring every 5 years. Investigate reconfiguration of mains layout to improve flow.	

²⁴ In Aramac during power outage natural pressure in the artesian bores provides sufficient pressure.

5.2 **Operation and Maintenance Procedures**

Table 5.4 below lists the current operation and maintenance procedures for Alpha and Jericho Table 5.5 below list the current operation and maintenance procedures for Aramac, Barcaldine and Muttaburra.

During the risk assessment it was identified that a large number of procedures are out-dated or in many cases procedures are non-existent. As part of the Risk Management Improvement Program out-dated procedures will be updated and new procedures will need to be developed.

New and updated procedures will be given a procedure number, title, revision date, process used for maintaining the documented procedure and the process for implementing the procedure.

Table 5.4 Alpha and Jericho Operation and Maintenance Procedure Documentation

Scheme Component / Sub- component	Preventive measure managed (where applicable)	Documented procedure	Version date	Position responsible	Process for implementing the procedure (Activity and Frequency)	Comments (including where procedures are inadequate or need updating)
		Procedure for Mains repair				Procedure out-
Sourcing Infrastructure & Distribution	Mains repair procedure	Procedure for new water service	None	Manager of Engineering Services	Currently no process for implementing.	dated and inadequate refer to RMIP
System		Procedure for new water main relocation				for improvements to procedures
	General	Alpha Water Treatment Plant ²⁶ Operation Manual	09/05	Manager of Engineering Services	Currently no process for implementing	Procedure adequate
Treatment Plant & Reservoirs	operations and maintenance procedures.	Jericho Water Treatment Plant Operation Manual ²⁵	07/02	Manager of Engineering Services	Currently no process for implementing	Procedure out- dated and inadequate refer to RMIP for improvements to procedures

²⁵Originally developed for Jericho WTP, have been adopted for Alpha (identical package plants)

		157

Table	5.5	Aramac,	Barcaldine	and	Muttaburra	Operation	and	Maintenance	Procedure
Docum	nenta	ation							

Scheme Component / Sub- component	Preventive measure managed (where applicable)	Documented procedure	Version date	Position responsible	Process for implementing the procedure (Activity and Frequency)	Comments (including where procedures are inadequate or need updating)
	Mains repair procedure	Procedure for Mains repair	None	Manager of Engineering		Procedure out- dated and inadequate refer to RMIP
Sourcing Infrastructure & Distribution		Procedure for new water service			Currently no process for	
System		Procedure for new water main relocation		Services	implementing.	for improvements to procedures

The procedures outlined above were developed before amalgamation of the three shires (Aramac, Barcaldine and Jericho). Currently there is no formal process to ensure documented procedures are accepted and implemented by staff and for documentation review, update and distribution to relevant staff other than open access through Council servers for water / technical officers and other relevant parties.

5.3 Management of Incidents and Emergencies

Table 5.6 shows the different levels of incidents for the entire drinking water service. There are five levels of incidents and emergencies ranging from Level 5 (most severe) to Level 1 (least severe). Barcaldine Regional Council has developed a Local Disaster Management Plan (current version dated 25/06/2014). Levels 5 incidents and emergencies should be handled under the Barcaldine Regional Council Local Disaster Management Plan and are likely to be the result or cause of other emergencies that are covered under the plan. Barcaldine Regional Council is separated into Local Disaster Management Groups.

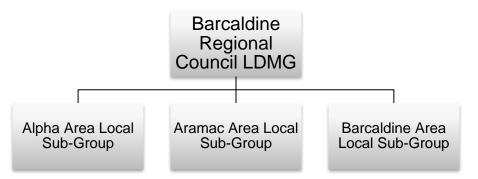


Table 5.7 shows how incidents and emergencies are managed relevant to drinking water quality. Table 5.8 details the emergency contact details for and protocols to be followed when a particular emergency or incident occurs. All other contact details for incident and emergency management are included in Barcaldine Regional Councils Local Disaster Management Plan.

The Barcaldine Regional Council is required to notify customers when an incident occurs. Notification will occur primarily through the council maintained email distribution list that will reach most/all of the key customers. Additional notification will occur through social media outlets such as the local Council Facebook page and local media outlets such as the BRC website. Furthermore, aged care programs such as Home and Community Care (HACC) will assist in informing the elderly community members. Sensitive users, such as hospitals, that will be severely affected by major incidents (level 3-5) will be directly contacted by the council immediately.

Table 5.6 Incident /	Emergency levels
----------------------	------------------

Incident / Emergency level	Description of level
Level 5	 Widespread outbreak of waterborne disease Declared disaster Supply unable to be maintained Gross exceedances of ADWG health guideline values for a chemical parameter (> five times the ADWG health guideline limit).
Level 4	 High level of E. coli (> 5 CFU/ 100 mL) or any pathogens detected in reticulation Failure of infrastructure (severe or emergency level supply restrictions required to ensure continuity of supply)
Level 3	 Detection of 1-5 CFU/100 mL E. coli in reticulation Failure of infrastructure (ability to supply water compromised – short term water restrictions may be required) Minor exceedances of ADWG health guideline value for chemical parameter (determined value is close to guideline value).
Level 2	 Failure of infrastructure or source supply (water quality or supply unlikely to be compromised) Exceedances of ADWG aesthetic guideline (customer complaints possible)
Level 1	Exceedances of operational limit managed through operational and maintenance procedures

Table 5.7 Management of Incidents and Emergencies

evel			Position/s responsible for Action/s	
	Disas	ster levels - Implement Barcaldine Regional Council Local Disaster Management Plan		
		Report to the OWSR by phone and written incident report		
	High level of E. coli (> 5 CFU/ 100 mL) or any pathogens detected in reticulation	1. Alert Manager of Engineering Services and Chief Executive Officer	1. Technical / Water Officer	
		2. Determine potentially affected area, isolate if possible. Issue Boil Water alert. Escalate emergency further if situation worsens.	2. Manager of Engineering Services	
		 Report detection to OWSR by phone (Immediately by phone, written incident report – Part 1 incident form - within 24 hours) 	3. Manager of Engineering Services	
		4. Resample for E. coli and disinfectant residual in potentially affected infrastructure	4. Technical / Water Officer	
		5. Undertake comprehensive contamination investigation	5. Manager of Engineering Services	
		6. Undertake necessary corrective actions	6. As appropriate	
		7. Upon resolution, provide written report to regulator (Part 2 incident form) and Chief Executive Officer	7. Manager of Engineering Services	
		 Non-compliance will be raised and will require signing off by the Manager of Engineering Services and the Chief Executive Officer after corrective actions have taken place. 	8. Manager of Engineering Services / Chief Executive Officer	
	Failure of infrastructure (severe or emergency level supply restrictions	1. Alert Manager of Engineering Services and Chief Executive Officer	1. Technical / Water Officer	
	required to ensure continuity of supply)	2. Determine reason for failure, isolate if possible. Consider options to recommence supply.	2. Manager of Engineering Services	
		 Report to OWSR by phone (Immediately by phone, written incident report – Part 1 incident form - within 24 hours) 	3. Manager of Engineering Services	
		4. Undertake comprehensive failure investigation	4. Manager of Engineering Services	
			5. As appropriate	
		5. Undertake necessary corrective actions to recommence supply and provide an estimate of when the supply can be recommenced	 Manager of Engineering Services / Chief Executive 	
		 Implement severe or emergency level supply restrictions. Consider escalating to a Level 1 incident. Notify the public. 	Officer 7. Manager of Engineering	
		 Upon resolution, provide written report to regulator (Part 2 incident form). Provide written report to the Chief Executive Officer 	Services 8. Manager of Engineering Services / Chief Executive	
		8. Non-compliance will be raised and will require signing off by the Manager of Engineering Services and the Chief Executive Officer after corrective actions have taken place.	Officer	

Level Incident or emergency		Summary of actions to be taken (with documented procedure listed)	Position/s responsible for Action/s
3	Detection of 1-5 CFU/100mL E.coli in reticulation	1. Alert Manager of Engineering Services and Chief Executive Officer	1. Technical / Water Officer
		2. Determine potentially affected area, isolate if possible. Consider Boil Water alert. Escalate emergency further if situation worsens.	2. Manager of Engineering Services
		 Report detection to OWSR by phone (Immediately by phone, written incident report – Part 1 incident form - within 24 hours) 	3. Manager of Engineering Services
		4. Resample for E. coli and disinfectant residual in potentially affected infrastructure	4. Technical / Water Officer
		5. Undertake comprehensive contamination investigation	5. Manager of Engineering Services
		6. Undertake necessary corrective actions	6. As appropriate
		7. Upon resolution, provide written report to regulator (Part 2 incident form)	7. Manager of Engineering Services
		 Non-compliance will be raised and will require signing off by the Manager of Engineering Services and the Chief Executive Officer after corrective actions have taken place. 	8. Manager of Engineering Services / Chief Executive Officer
3	Failure of infrastructure (ability to supply water compromised – short term	1. Alert Manager of Engineering Services and Chief Executive Officer	1. Technical / Water Officer
2	water restrictions may be required) Failure of infrastructure or source supply (water quality or supply unlikely to	2. Determine reason for failure, isolate if possible. Consider options to recommence supply.	2. Manager of Engineering Services
	be compromised)	3. Undertake comprehensive failure investigation	3. Manager of Engineering Services
			4. As appropriate
		4. Undertake necessary corrective actions to recommence supply and provide an estimate of when the supply can be recommenced	5. Manager of Engineering Services
		5. Implement Short Term Water restrictions if required	6. Manager of Engineering Services
		6. Provide written report to the Chief Executive Officer	
		7. Non-compliance to be raised and will require signing off by the Manager of Engineering Services and the	7. Manager of Engineering Services / Chief Executive Officer
		Chief Executive Officer after corrective actions have taken place.	
2	Minor exceedances of ADWG health guideline value for chemical parameter (determined value is close to guideline value).	1. Alert Manager of Engineering Services and Chief Executive Officer	1. Technical / Water Officer
		2. Determine potentially affected area, isolate if possible (i.e. individual bore). Consider Water alert. Escalate emergency further if situation worsens.	2. Manager of Engineering Services
		 Report detection to OWSR by phone (Immediately by phone, written incident report – Part 1 incident form - within 24 hours) 	3. Manager of Engineering Services
		4. Resample for detected health parameter for all bores and combined bores (if possible)	4. Technical / Water Officer
		5. Undertake comprehensive contamination investigation	5. Manager of Engineering Services

Level	Incident or emergency	Summary of actions to be taken (with documented procedure listed)	Position/s responsible for Action/s
		6. Undertake necessary corrective actions	 Manager of Engineering Services Manager of Engineering Services
		 Upon resolution, provide written report to regulator (Part 2 incident form). Provide Report to Chief Executive Officer also. 	8. Manager of Engineering Services / Chief Executive Officer
		8. Non-compliance will be raised and will require signing off by the Manager of Engineering Services and the Chief Executive Officer after corrective actions have taken place.	
	Exceedances of operational limit managed through operational and	1. Alert Manager of Engineering Services	1. Technical / Water Officer
	maintenance procedures	2. Review operational procedures.	2. Manager of Engineering Services
		3. Rectify exceedance and bring parameter within operational limits. Parameter shall be corrected same day.	3. Technical / Water Officer
			4. Manager of Engineering
		 Non-compliance to be raised and will require signing off by the Manager of Engineering Services and the Chief Executive Officer after corrective actions have taken place. 	Services / Chief Executive Officer

Description of Incident/ Emergency	Level	Business Unit / Organisation	Contact person(s) details	Communication protocols
All	5	Refer to Barcaldi	ne Regional Council Local Disaster N	Management Plan
All	All levels	Barcaldine Regional Council	Chief Executive Officer Steven Boxall 71 Ash Street, Barcaldine QLD 4725 Phone 07 4651 5626 Fax 07 4651 1778 <u>CEO@barc.qld.gov.au</u>	Phone Email Written Reports
		Barcaldine Regional Council – Alpha Area	District Manager Clint Swadling 43 Dryden Street (PO Box 11), Alpha, QLD 4724 Phone 07 4685 1101 Fax 07 4685 1162 <u>emalpha@barc.qld.gov.ay</u>	Phone Email Written Reports
		Barcaldine Regional Council – Aramac Area	District Manager Ian Kuhn 35 Gordan Street (PO Box 65), Aramac, QLD 4726 Phone 07 4651 5600 Fax 07 4652 9990 <u>emaramac@barc.qld.gov.au</u>	Phone Email Written Reports
		Barcaldine Regional Council – Barcaldine Area	District Manager Brett Walsh 71 Ash Street, Barcaldine, Barcaldine, QLD 4725 Phone 07 4651 5600 Fax 07 4651 1778 BrettW@barc.qld.gov.au	Phone Email Written Reports
	All levels	Barcaldine Regional Council	Manager of Engineering Services Rick Rolfe 71 Ash Street, Barcaldine, Barcaldine, QLD 4725 Phone 07 4651 5623 Fax 07 4651 1778 meng@barc.qld.gov.au	Phone Email Written Reports
	All levels	Barcaldine Regional Council	Technical / Water Officer	Phone Email Written Reports
All in Table 5.7	5, 4, 3, 2 Where outlined in Table 5.7	OWSR Office of the Water S GPO Box 2454 Brisbane Q 4001	Supply Regulator	Phone Written Report (email and post)

Description of Incident/ Emergency	Level	Business Unit / Organisation	Contact person(s) details	Communication protocols				
		drinkingwater.report	hkingwater.reporting@dnrme.qld.gov.au					
		Phone – Water 13 7	one – Water 13 74 68 or Emergency 13 25 00					
All health	5, 4, 3	Central QLD Public	entral QLD Public Health Unit					
related		82-86 Bolsover Stre	et	Written Email				
		Rockhampton Quee	nsland 4700					
		Phone 07 4920 6989	hone 07 4920 6989					
For all other con	For all other contacts and contact numbers refer to the Local Disaster Management Plan contact list, a copy of which is contained in Appendix E.							

5.4 Risk Management Improvement Program

Unacceptable residual risks or risks identified in the plan have been included in the Risk Management Improvement Program (RMIP) below for Alpha and Jericho in 5.4.1 and Aramac, Barcaldine and Muttaburra in 5.4.2 below.

The RMIP also include for improvements to parts of the plan where deficiencies in information or uncertainties exist. Priorities of the improvements and target dates for completion have also been included.

5.4.1 Alpha and Jericho RMIP

Table 5.9 below outlines the proposed RMIP to be implemented for Alpha. Table 5.10 below outlines the proposed RMIP to be implemented for Jericho.

As Alpha and Jericho's raw water requires treatment prior to reticulation these schemes are generally more complex and therefore their RMIP is larger than the other three schemes. Improvements include drafting and implementing operational procedures, operator training and reducing the risk of contamination to the relatively shallow aquifers.

Table 5.9 Alpha Risk Management Improvement Program

0		Scheme	Hazard/ Hazardous event	Priority	Action(s)			Tannat late to	
Code	Improvement	Component / Sub- component			interim	short-term	long-term	Target date/s	Responsibility
AL1	Operational & Maintenance Procedures / Operations Manual ²⁷	 Source, Sourcing Infrastructure, Treatment Plant & Reservoirs, Disinfection Process, Distribution System 	 Septic system discharges flood events maintenance and repair of raw water main treatment plant bypasses alum over / under dosing alum over dosing, hydrochloric over / under dosing walkway access over / under chlorination. 	High (based on large number of out-dated / non-existent procedures)	Identify out-dated procedures, update and obtain approval and implement. Assign procedure and revision number.	Identify new procedures needed, develop and obtain approval and implement. Assign procedure and revision number.	N.A.	Interim: Nov- 2018 Short-term: June-2019	
AL2	Commence raw water sampling in addition to treated water	Source	 Septic system discharges. Hazard that arises from the natural geological processes in the aquifer. Flood event Maintenance and repair of raw water main 	Medium (to assess the effectiveness of the treatment process & determine certainty of the risk level associated with bypassing the water treatment plant)	Commence operational monitoring of combined raw water quality.	N.A.	If operational monitoring of raw water quality identifies issues with raw water quality, monitor individual bores to determine the effect is caused by one bore in isolation or a combination of bores.	Interim Oct- 2018 Long-term: Implement raw water monitoring Oct 2018. With ongoing characterisation bore source water.	Manager of Engineering Services
AL3	Catchment Characterisation – Determine the effect of flooding on bore water	 DWQMP, Source, Sourcing Infrastructure 	Flood event	Medium (Based on uncertainties of the risk of flooding on water quality in the risk assessment)	N.A.	N.A.	Identify the effect of flooding on bore water quality considering private bores which may not be capped or correctly constructed.	Oct-18	
AL4	Seal uncapped bores	Bores	Contamination of source water	High	N.A	Determine bore seal design and cost	Seal bores which are abandoned under council jurisdiction.	Short-term: Oct - 2018 Long-term: Jun-19	
AL5	Operator Training and handover process	Treatment Plant & Reservoirs	 Chemical over / under dose (true colour, turbidity, bacteria). Over chlorination, under chlorination, low residual in elevated reservoir, pH >8, insufficient contact time 	Medium (Based on uncertainties of the effectiveness of the treatment processes)	N.A.	Allow for peer training approximately 5 days, source operator from other DWSP to train operator	Based on peer training prepare hand over document so that new operators can pick up operations.	Short-term: Jun-18 Long Term: Aug-18	

Table 5.10 Jericho Risk Management Ir	mprovement Program
---------------------------------------	--------------------

		Scheme	Hazard/ Hazardous	Priority	Action(s)			Tannat data/a	
Code	Improvement	Component / Sub- component	event		interim	short-term	long-term	Target date/s	Responsibility
J1	Operational & Maintenance Procedures / Operations Manual ²⁸	 Source, Sourcing Infrastructure, Treatment Plant & Reservoirs, Disinfection Process, Distribution System 	 Septic system discharges flood events maintenance and repair of raw water main treatment plant bypasses alum over / under dosing alum over dosing, hydrochloric over / under dosing walkway access over / under chlorination. 	High (based on large number of out-dated / non-existent procedures)	Identify out-dated procedures, update and obtain approval and implement. Assign procedure and revision number.	Identify new procedures needed, develop and obtain approval and implement. Assign procedure and revision number.	N.A.	Interim: Nov- 2018 Short-term: June -2019	
J2	Commence Monitoring of raw water quality - refer to operational monitoring program.	Source	 Septic system discharges. Hazard that arises from the natural geological processes in the aquifer. Flood event Maintenance and repair of raw water main 	Medium (to assess the effectiveness of the treatment process & determine certainty of the risk level associated with bypassing the water treatment plant)	Commence operational monitoring of combined raw water quality.	N.A.	If operational monitoring of raw water quality identifies issues with raw water quality, monitor individual bores to determine the effect is caused by one bore in isolation or a combination of bores.	Interim Oct- 2018 Long-term: Implement raw water monitoring Oct 2018. With ongoing characterisation bore source water.	Manager of Engineering Services
J3	Catchment Characterisation	 DWQMP, Source, Sourcing Infrastructure 	Flood event	Medium (Based on uncertainties of the risk of flooding on water quality in the risk assessment)	N.A.	N.A.	Identify the effect of flooding on bore water quality considering private bores which may not be capped or correctly constructed.	Oct-2018	-
J4	Operator Training and handover process	Treatment Plant & Reservoirs	 Chemical over / under dose (true colour, turbidity, bacteria). Over chlorination, under chlorination, low residual in elevated reservoir, pH >8, insufficient contact time 	Medium (Based on uncertainties of the effectiveness of the treatment processes)	N.A.	Allow for peer training approximately 5 days, source operator from other DWSP to train operator	Based on peer training prepare hand over document so that new operators can pick up operations.	Short-term: Jun-18 Long Term: Aug-18	

5.4.2 Aramac, Barcaldine and Muttaburra RMIP

Table 5.11 below outlines the proposed RMIP to be implemented for Aramac, Barcaldine and Muttaburra.

All three schemes source their water from relatively deep artesian bores and the water quality is suitable for reticulation without treatment. Improvements include drafting and implementing operational procedures and restricting access to the bore water sites.

Table 5.11 Aramac, Barcaldine and Muttaburra Risk Management Improvement Progra	m
---	---

Code	Improvement	Scheme Component	Hazardous event	Priority		Action(s)			Responsibility
Code	improvement	/ Sub-component	Hazardous event Frionty	Fliolity	interim	short-term	long-term	Target date/s	Responsibility
ABM1	Operational & Maintenance Procedures	 Bores, Sourcing Infrastructure, Distribution System 	 Sewage and septic system discharges, agricultural run-off Hazard that arises from the natural geological processes in the aquifer Accidental or intentional contamination Reticulation maintenance and repair 	High (based on large number of out-dated / non-existent procedures)	Identify out-dated procedures, update and obtain approval and implement. Assign procedure and revision number.	Identify new procedures needed, develop and obtain approval and implement. Assign procedure and revision number.		Interim: Oct- 2018 Short-term: June-2019	
ABM2	Replace ageing mains in accordance with asset replacement program. Continue to apply for internal & external funding	Distribution System	 Septic system discharges. Ingress of pathogens Maintenance and repair of raw water main 	High	N.A	Replace high priority areas with greatest susceptivity for breakage.	Replacement of ageing mains in accordance with asset replacement program. Replace all expired mains. Approximately 1.9km in Aramac and 3.5km in Muttaburra.	Short term: June 2019 Long term: June 2021.	 Manager of Engineering Services
ABM3	Create flushing schematic layout to go with the SOP Air scouring every 5 years. Implement reconfiguration of mains layout to improve flow.	Distribution System	 Pathogen ingress Reduced water quality 	High	Create flushing schematic to go with operations and maintenance procedures.	Implement improved configuration of mains in Aramac to avoid dead spots	Air scoring every 5 years	Short term: December 2018 Long Term: Air Scouring June 2022	

5.5 Information Management

Barcaldine Regional Council has an information management plan developed for the individual shires and contained in their Total Management Plans. The current system was developed to record all relevant static and dynamic data for all system components, to summarise the data at set times in each financial year and formulate useable information reports on the condition and performance of system components and to integrate this information into the strategic, financial, asset and operational management plans.

Static and dynamic data is recorded for each component of the water supplies by the various Officers (Water / Technical / Works), Administrative Officers and Manager of Engineering Services and this data is kept on file at Barcaldine Regional Council or on site at the Water Treatment Plants. Where necessary the Manager of Engineering Services prepares a summary report of the data for inclusion in the Council's monthly meeting agendas. Council have set up electronic storage of data to enable formulation of reports.

However not all information gets reported to Council formally or directly and often the operations people are approached by members of the community. In future Council employees will be required to lodge formally any requests or complaints made by the community to them directly.

Table 5.12 contains a summary of the Water Quality Management Information currently recorded by Barcaldine Regional Council.

Table 5.12 Summary of Water Quality Management Information²⁹

Information/ Document	Format (hardcopy / electronic)	Currency	Where stored (at WTP / on electronic system / other)	Position Responsible	Comments
Customer Service Request Form	Hardcopy Electronic	Live document	Filed at Barcaldine Regional Council (Electronic on Server)	Administrative Officer Manager of Engineering Services	To record individual customer details and complaints.This form enables customer complaints to be dealt with expediently and enables identification of recurring problems. It also helps facilitate corrective and preventative actions and improvements to operations as part of the continual improvement process within Councils QES Management Systems.
Reactive / Planned Maintenance / Register	Hardcopy Electronic	Live document	Filed at Barcaldine Regional Council (Electronic on Server)	Administrative Officer Town Foreman	Records the type of work, its location within the water supply system.
Planned Operational and Maintenance Programme	Hardcopy SAMP Electronic	SAMP review 2012	Filed at Barcaldine Regional Council (Electronic on Server)	Administrative Officer Manager of Engineering Services Water / technical / works officers	This form details planned maintenance procedures that the Officers (works / technical / water) complete at weekly, monthly, bi-annually or annually. The form also serves as a report sheet recommending further immediate corrective action. Details are also transferred to the Reactive and Planned Maintenance form.
Water Consumption and Pump Records	Hardcopy Electronic	Live document	Filed at Barcaldine Regional Council (Electronic on Server)	Administrative Officer Water / Technical Officer	Electrical power consumption and volume of water pumped from each bore. Analysis of this data provides information on the performance of the pumping units and allows the total water consumed to be compared with previous water consumption figures for similar time periods for previous years.
Operational Monitoring Database	Electronic Hardcopy	Annual	Filed at Barcaldine Regional Council (Electronic on Server)		All verification monitoring is captured in QLD Water database (SWIM). This database is a central point for all stakeholders allowing remote access and allows operators to enter data when required. The spreadsheet also records and
					Trends are automatically created based on the inputted data. Refer to Verification Monitoring Program.

Information/ Document	Format (hardcopy / electronic)	Currency	Where stored (at WTP / on electronic system / other)	Position Responsible	Comments
 Chemical Supply Register Chlorine (Sodium Hypochlorite) Alum (Alum Sulphate) Hydrochloric Acid New Chemicals (new log for each new chemical) 	Electronic Hardcopy	Live document	WTP Filed at Barcaldine Regional Council (Electronic on Server)	Water / Technical Officer	

6 Operational and Verification Monitoring Programs

Details of the operational monitoring programs are tabulated below for Alpha and Jericho in Table 6.1 and for Aramac, Barcaldine and Muttaburra in Table 6.2.

Details of the verification monitoring programs for Alpha, Aramac, Barcaldine, Jericho and Muttaburra are tabulated in Table 6.3 to Table 6.4.

6.1 Operational Monitoring

6.1.1 Alpha and Jericho Operational Monitoring

Operational monitoring conducted for Alpha and Jericho water supply schemes are tabulated in Table 6.1 below detailing monitoring locations, parameters measured, target and critical levels and actions to be taken in the event the levels are exceeded.

The persons responsible for operational monitoring include the Chief Executive Officer, Manager of Engineering Services and the Technical Officer (Alpha area). The Technical Officer is responsible for conducting operational monitoring. The Technical officer (Alpha area) manages day to day operations of the schemes in Alpha and Jericho.

Any exceedances of target limits shall be reported to the Manager of Engineering Services. The noncompliance shall be dealt with during the same working day and brought below the target limit level. Non-compliance will be raised and will require signing off by the Manager of Engineering Services after corrective actions are taken. Corrective actions will generally be determined by the noncompliance.

Any exceedances of critical limits shall be reported to the Manager of Engineering Services. The non-compliance shall be dealt with during the same working day and brought below the critical and action limits. Non-compliance will be raised and will require signing off by the Manager of Engineering Services and the Chief Executive Officer after corrective actions have taken place. Corrective actions will generally be determined by the non-compliance. A determination shall be made as to the cause of the exceedance and logged and the Manager of Engineering Services shall review current procedures to determine if they are applicable.

The Technical Officer will be required to log all maintenance issues in an operations log and a copy of this shall be sent fortnightly to the Manager of Engineering Services. While the Technical Officer will be encouraged to maintain informal lines of communication, formal communications shall also be required so as to enable a means for improved record keeping.

The operational monitoring program for Alpha and Jericho has been determined based on the complexity of the treatment systems and size of the scheme. Currently the DWSP does not sample the raw water quality prior to treatment. In order to determine the effectiveness of the treatment processes the DWSP will commence sampling the combined raw water quality. If the monitoring highlights any issues with the combined raw water quality, then the DWSP will commence sampling the individual bores to determine if the problem is associated with a single bore or multiple bores. This is particularly the case in Alpha where there is multiple bores in various locations throughout the town. In the case of Jericho both bores are located on the same site and the water quality from both bores is likely to be similar.

Online automated monitoring equipment is currently in use at the Alpha and Jericho water treatment plants, measuring pH, turbidity and chlorine residual, providing realtime water quality data and automated critical control point alarms for DWSP operators and managers. Operational monitoring samples are also taken after storage and in the reticulation system at designated sampling points as described below in Table 6.1.

Table 6.1 Alpha and Jericho C	Operational Monitoring
-------------------------------	------------------------

Location in System	Parameter	Associated Hazard	Sampling								
					Location		Target limit	Action if target limit exceeded	Critical limit	Action if critical limit exceeded	Positions Responsible
			Frequency	Method	Alpha	Jericho		UNCCOUCU			
Combined Raw Water	E. coli	Bacteria	Monthly	Grab Sample	Inlet to WTP at No. 9 Mackeller Street.	Inlet to WTP at No. 2 Darwin Street.	0	Ensure target residual	>1	Test individual bore to determine if exceedances are linked to individual bores. Investigate cause or origin of exceedance consider reducing or cease supply of poorer quality bores if issue cannot be addressed immediately. Report to Engineering Services Manager. Check Chlorine residual adjust dosage rate if needed. Notify OWSR and complete incident reporting forms. Check Chlorine residual adjust dosage rate if needed. Notify OWSR and complete incident reporting forms. Report to Engineering Services Manager. Engineering Services Manager to review procedures. If required Notify OWSR and complete incident reporting forms Report to Engineering Services Manager to review procedures. Ensure mixing tank is mixing. Adjust Alum dosing rate. Ensure Filters are backwashed. Adjust flow rate. Re-analysis turbidity. Parameter needs to be corrected same day. If not report non-compliance to Engineering Services Manager by phone and email.	Overall Responsibility: Chief Executive Officer Implementation, review and actions: Manager of Engineering Services
	Total Coliforms	Bacteria					0	Chlorine levels are being achieved in reticulation	25		
	Turbidity	Turbidity, Bacteria					< 1 NTU		5 NTU		
	pН	рН					7	Adjust pH Adjustment	≥5 & ≤8		
Treatment Plant & Reticulation system at designated sampling points	Coliform Colony Counts	Bacteria	Weekly Automated Monitoring & Monthly Grab Sample from Distribution		2 locations from: Alpha Hospital, Council depot swimming pool, information centre, hotel, or council office and ground level reservoir outlet	2 locations from: Bush nursing building, Council depot, swimming pool, information centre, hotel and ground level reservoir outlet	0	Check Chlorine residual. Adjust chlorination dose	1		
	E. coli	Bacteria					0		1		
	Chlorine Residual	Chlorine		Automated Monitoring & Monthly Grab Sample from Distribution			0.5 mg/L	Adjust chlorination dose	< 0.2 & >3mg/l		
	Turbidity	Turbidity, Bacteria					< 0.5 NTU	Adjust Alum dose	5 NTU		
	рН	рН					7	Adjust pH Adjustment	≥ 5 & ≤ 8	Report to Engineering Services Manager to review procedures. Readjust pH adjustment. Re-analysis pH. Parameter needs to be corrected same day. If not report non-compliance to Engineering Services Manager by phone and email.	
Water Treatment Plant	Bypass of WTP	Hazards associated with bypassing the WTP	3 Times Weekly			N/A	N/A	N/A	N/A	The Technical Officer is required to visually inspect valves and ensure the WTP is not bypassed. Valves shall be correctly aligned as per the site as built drawings so as to disable the bypass. The valves shall be in good working condition. Any non-compliances shall be immediately raised to the Manager of Engineering Services	Operations: Technical Officer
				Visual	N/A					bypassed. Verbal followed by written permission will be required in order to bypass the WTP.	
Water Treatment Plant	General Maintenance	Hazards associated with maintenance of the WTP	maintenance of Weekly				N/A	N/A	N/A	The Technical Officer is required to log all maintenance issues encountered on a day to day basis. Three times weekly the Technical Officer is required to visually inspect the plant for maintenance issues. A copy of the maintenance log is sent to the Manager of Engineering Services fortnightly.	
										This shall include visual checks to ensure all barriers such as roof hatches or doors remain closed.	

6.1.2 Aramac, Barcaldine and Muttaburra Operation Monitoring

Operational monitoring for Aramac, Barcaldine and Muttaburra water supply schemes is tabulated in Table 6.2 below detailing monitoring locations, parameters measured, target and critical levels and actions to be taken in the event the levels are exceeded.

The persons responsible for operational monitoring include the Chief Executive Officer, Manager of Engineering Services and the Technical Officer (Aramac) and the Water Officers (Barcaldine and Muttaburra). The Technical / Water Officers are responsible for conducting operational monitoring. In Aramac the Technical Officer and in Barcaldine and Muttaburra the Water Officers are responsible for the day to day operations of the plant.

Any exceedances of target limits shall be reported to the Manager of Engineering Services. The noncompliance shall be dealt with during the same working day and brought below the target limit level. Non-compliance will be raised and will require signing off by the Manager of Engineering Services / Executive Manager / Chief Executive Officer after corrective actions are taken. Corrective actions will generally be determined by the non-compliance.

Any exceedances of critical limits shall be reported to the Manager of Engineering Services. The non-compliance shall be dealt with during the same working day and brought below the critical and action limits. Non-compliance will be raised and will require signing off by the Manager of Engineering and the Chief Executive Officer after corrective actions have taken place. Corrective actions will generally be determined by the non-compliance. A determination shall be made as to the cause of the exceedance and logged and the Manager of Engineering Services shall review current procedures to determine if they are applicable.

The Technical Officer will be required to log all maintenance issues in an operations log and a copy of this shall be sent fortnightly to the Manager of Engineering Services. While the Technical Officer will be encouraged to maintain informal lines of communication, formal communications shall also be required so as to enable a means for improved record keeping. Maintenance monitoring shall include but not limited to visual inspections to ensure that roof covers at the reservoirs are closed and that access to the sites is limited.

			Sampling									
Location in System	Parameter	Associated Hazard	-	Method	Location			Target limit	Action if target limit exceeded	Critical limit	Action if critical limit exceeded	Positions Responsible
			Frequency	Method	Aramac	Barcaldine	Muttaburra					
Reticulation system at designated sampling points	E. coli	Bacteria	Barcaldine Weekly Aramac & Muttaburra Monthly	Council Depot,	s from ng: 2 Locations from the following: /), Council Depot, pot, Council Office,	0	Determine potentially affected area, isolate if possible. Implement system flushing. Consider Boil Water alert.	1	Determine potentially affected area, isolate if possible. Implement system flushing. Report to Engineering Services Manager. Notify OWSR and complete incident reporting forms. Consider Boil Water alert.	Overall Responsibility:		
	Turbidity	Turbidity, Bacteria			Road House or General Store	Council Office, Show Grounds or Information centre	Town Clinic or Roadhouse	< 0.5 NTU	Check bore pressure and integrity. Check reservoir levels. Conduct follow up monitoring.	≤1.0 NTU	Report to Engineering Services Manager to review procedures. Identify source and rectify, parameter needs to be corrected same day. If not report non-compliance to Engineering Services Manager by phone and email.	Chief Executive Officer
Bores, System Wide	General Maintenance	Hazards associated with maintenance bores, reservoirs and reticulation system	Weekly	Visual	N/A	N/A	N/A	N/A	See critical limit	N/A	The Water / Technical Officers are required to log all maintenance issues encountered on a day to day basis. Three times weekly the Water / Technical Officer is required to visually inspect the scheme for maintenance issues. A copy of the maintenance log shall be sent to the Manager of Engineering Services Monthly. This shall include visual checks to ensure all barriers such as roof hatches or doors remain closed for the Reservoirs in Barcaldine.	Implementation, review and actions: Manager of Engineering Services Operations: Technical Officer

Table 6.3. in section 6.2.1 below tabulates the parameters to be monitored, monitoring locations and frequency of monitoring for Alpha and Jericho.

Table 6.4 in section 6.2.2 below tabulate the parameters to be monitored, monitoring locations and frequency of monitoring for Aramac, Barcaldine and Muttaburra.

6.2.1 Alpha and Jericho Verification monitoring

Alpha and Jericho both have shallow sub artesian bores with raw water quality requiring treatment prior to reticulation. Table 6.3 in 6.2.1 above tabulates the parameters to be monitored, monitoring locations and frequency of monitoring.

For Alpha and Jericho microbial, physical and inorganic verification monitoring will be conducted at designated points in the reticulation system. These points will generally include public buildings to facilitate access.

Source water monitoring is programed to take place from all source water bores on an annual basis. Annual source water monitoring has been designed to analyse for potential contaminants not previously tested on a replicated basis. Anolytes to be tested include those either naturally present in the underlying geology or chemicals which may be present as a result of previous anthropogenic activities in the catchment.

Currently, data on water quality complaints are limited. Generally lines of communication are informal and complaints in towns are made directly to the Technical Officer or works supervisor and currently are not logged formally. Where complaints are lodged formally with council they are filed to a file associated with the property where the complaint originated. As an improvement complaints made informally to council staff will be required to be lodged formally to the Manager of Engineering Services in writing. This will then be added to the SWIM water database under Water Quality Complaints and the data from each complaint entered.

Characteristic	Parameter	ADWG &/or Regulation Value	Frequency		Loc	ation	Analysing Authority	
		Value	Source Water	Distribution	Alpha	Jericho	Autionty	
Microbiol quality	E.coli	Nil detect	Appuolly					
Microbial quality	Total Coliforms	N/A	Annually					N F
Disinfection By-Products	Chlorate	0.8mg/l - Health						
-	Trihalomethanes	.25mg/L - Health						
Water Treatment Chemicals	Aluminium 0.2mg/l - Aesthetic							
Physical	рН	pH 6.5–8.5			Alpha Hospital, swimming pool and	Bush nursing building, swimming		
Physical	Turbidity	5 NTU - Aesthetic		Quarterly	ground level	pool and ground		
Inorganics	Dissolved Oxygen	> 85% - Aesthetic	N/A		reservoir outlet	level reservoir outlet		
	Iron	0.3mg/l - Aesthetic						
	Soluble Iron	N/A						
	Manganese	0.5mg/l - Health						
	Soluble Manganese	N/A						
	Fluoride	1.5mg/l - Health						
	lodide	0.5mg/l - Health						
	Nitrate	50mg/l - Health					QHFSS	
	Nitrite	3mg/l - Health						
	Sulfate	500mg/l - Health						
	Antimony	0.003mg/l - Health						
	Arsenic	0.01mg/l - Health						
	Barium	2mg/l - Health						
	Beryllium	0.06mg/l - Health						
Inorganics Physical	Boron	4mg/l - Health						
Thyologi	Cadmium	0.002mg/l - Health						
	Chromium	0.05mg/l - Health	Annually	N/A	At all supply b	ore headworks		No
	Copper	2mg/l - Health						
	Cyanide	0.08mg/l - Health						
	Lead	0.01mg/l - Health						
	Mercury	0.001mg/l - Health						
	Molybdenum	0.05mg/l - Health						
	Nickel	0.02mg/l - Health						
	Selenium	0.01mg/l - Health						
	Silver	0.1mg/l - Health	1					
	Uranium	0.017mg/l - Health	1					
	Dissolved Organic Carbon	N/A	1					

Response to Exceedances

Refer to Incident Management Plan Notify OWSR and complete incident reporting forms Follow operational procedure for flushing mains for E.coli exceedance

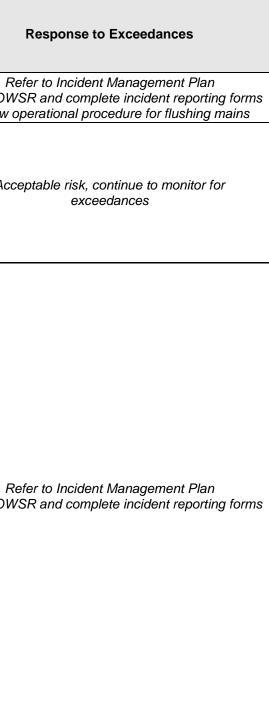
Acceptable risk, continue to monitor

Refer to Incident Management Plan

Notify OWSR and complete incident reporting forms

6.2.2 Aramac, Barcaldine and Muttaburra Verification Monitoring

Aramac, Barcaldine and Muttaburra have deep artesian bores. In Aramac and Muttaburra bore water is supplied directly to reticulation without pumping and storage. In Barcaldine raw water is pumped from the bores and stored in ground level reservoirs prior to being pumped into reticulation. All three towns have a water quality sufficient to be reticulated without treatment.


For Aramac, Barcaldine and Muttaburra microbial, physical and inorganics verification monitoring will be conducted at various points in the reticulation system.

Data from verification monitoring shall be recorded in SWIM Local which when each new analysis suite is added, trends will be automatically updated based on the date and each data set. The trends for each scheme and each parameter sampled are enclosed in section 3 above. The Water / Technical Officer will be required to record in a log the weather conditions when sampling and this log shall be sent to the Manager of Engineering Services for inclusion in the spread sheet.

Currently, data on water quality complaints are limited. Generally lines of communication are informal and complaints in towns are made directly to the Water / Technical Officer or works supervisor and currently are not logged formally. Where complaints are lodged formally with council they are filed to a file associated with the property where the complaint originated. As an improvement complaints made informally to council staff will be required to be lodged formally to the Manager of Engineering Services in writing. This will be filed under Water Quality Complaints and the data from each complaint logged in a Water Quality complaint spread sheet.

Table 6.4 Aramac	, Barcaldine	and Muttaburra	Verification	Monitoring
------------------	--------------	----------------	--------------	------------

				Testing						
Characteristic	Parameter	ADWG &/or	Freque	ency	Location			Analysing		
		Regulation Value	Source Water	Distribution	Aramac Barcaldine		Muttaburra Authority			
Microbial quality	E.coli	Nil detect							Re Notify OW Follow o	
	pН	pH 6.5–8.5	-			3 Sites from the				
	Colour	15 HU - Aesthetic	1		2 Sites from the following:	following: Hospital	2 Sites from			
Physical	Turbidity	5 NTU - Aesthetic	N/A	Oursetart	Hospital	(mandatory),	the following: Council Depot		Acc	
	Dissolved Oxygen	> 85% - Aesthetic	- <i>N/A</i>	Quarterly	(mandatory), Council Depot, Road House or General Store	Council Depot Council Office	Council Office Town Clinic or Roadhouse	-		
	Iron	0.3mg/l - Aesthetic	1			Showgrounds or Information Centre				
	Dissolved Iron	N/A	1							
	Manganese	0.5mg/l - Health	1							
	Dissolved Manganese	N/A	1							
	Fluoride	1.5mg/l - Health					QHFSS			
	Antimony	0.003mg/l - Health	-							
	Arsenic	0.01mg/l - Health	-							
	Barium	2mg/l - Health	1							
	Beryllium	0.06mg/l - Health								
	Boron	4mg/l - Health								
Inorganics	Cadmium	0.002mg/l - Health	1						R	
	Chromium	0.05mg/l - Health	1							
	Copper	2mg/l - Health	1,,,,,	N// A	A.C. 11		,		Notify OW	
	Cyanide	0.08mg/l - Health	- Annually	N/A	At all s	supply bore head	WOrks			
	Lead	0.01mg/l - Health	1							
	Mercury	0.001mg/l - Health	1							
	Molybdenum	0.05mg/l - Health	1							
	Nickel	0.02mg/l - Health	1							
	Selenium	0.01mg/l - Health]							
	Silver	0.1mg/l - Health	1							
	Uranium	0.017mg/l - Health	1							
Physical	Dissolved Organic Carbon	N/A	1							

Appendix A

Drinking Water Quality Management Plan Approval Application

Drinking Water Quality Management Plan Approval Application

Water Supply (Safety and Reliability) Act 2008, section 95

Privacy Discialmer: Collection of information provided in this approved form and any attachments is authorised under the Water Supply (Safety and Retability) Act 2009 and is being used for the purpose of applying to the Office of the Water Supply Regulator for approval of a drinking water quality management plan. The Department of Environment and Resource Management will endeavour to maintain any confidentiality of information relating to your form. However, consideration of your form may involve consultation and if so, details of your form may be disclosed to third parties. This information will not otherwise be disclosed outside of the department unless required or authorised by law (for example as under the *Right to Information Act 2009*).

Note: This is an approved form under the Water Supply (Safety and Reliability) Act 2008, to be used by the drinking water service provider, to apply to the regulator for approval of a drinking water quality management plan (DWQMP).

Before submitting this approved form, please be fully aware of your rights and obligations under the Water Supply (Safety and Reliability) Act 2008.

1. Drinking Water Servic	e Provider Details —							
Drinking water service provi	Drinking water service provider Barcaldine Regional Council							
Barcaldine Regional Counc								
2. Contact Details ——								
Principal Contact								
Family name	Given name(s)		Position					
Howard	Des		CEO					
Postal address								
PO Box 191				٦				
Barcaldine			Postcode 4725					
Telephone number	Fax number	Mobile number						
(07) 4651 5600	(07)4651 1778							

3. Drinking Water Scheme Details -

desh@barcaldinerc.qld.gov.au

Email address

Please list the drinking water scheme(s) to which this plan applies

pha	
amac	
richo	
ultaburra	
rcaldine	

(If space provided is insufficient, additional information may be attached)

Form WSR505

V01 Jan 2010

SSA Multimedia Services Page 1 of 2

Drinking Water Quality Management Plan Approval Application continued... page 2 of 2

4. Relevant Documents -

List below all supporting documentation attached to this application that form part of the DWQMP. Where a document applies to a specific scheme or schemes please state this (e.g. scheme name).

	Document Name(s)						
1.							
2.							
3.							
4.							
5.							
6.							
7.							
8.							

(If space provided is insufficient, additional information may be attached)

5. Declaration .

I/we declare and warrant that I/we have all the necessary and appropriate authority on behalf of the drinking water service provider to declare the information in this approved form, including any attachments or supporting information provided, are true and accurate to the best of my/our knowledge.

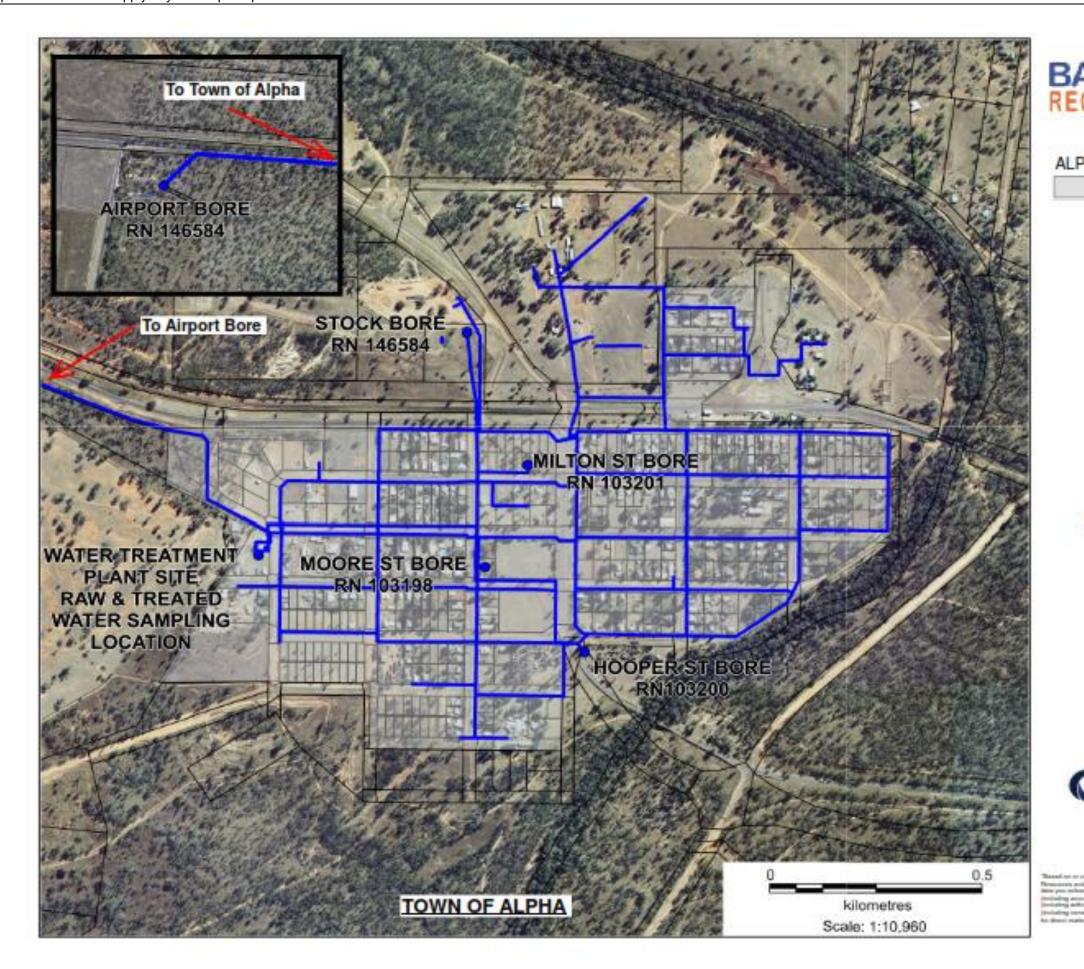
Family name	Given name(s)			
Howard	Des			
Position	Signature	Date (dd/mm/yyyy)		
CEO	Alloward	abi03112		
Family name	Given name(s)			
Position	Signature	Date (dd/mm/yyyy)		
		1 /		

6. Submission ·

Please complete and sign the form and send one (1) printed copy of all relevant materials, along with all materials saved on to CD (or equivalent electronic device) to:

Director

Water Industry Asset Management and Standards Office of the Water Supply Regulator Department of Environment and Resource Management GPO Box 2454 Brisbane Qld 4001


Form WSR505 V01 Jan 2010

SSA Multimedia Services Page 2 of 2

Appendix B

Water Supply Layouts Superimposed on Aerial Photos

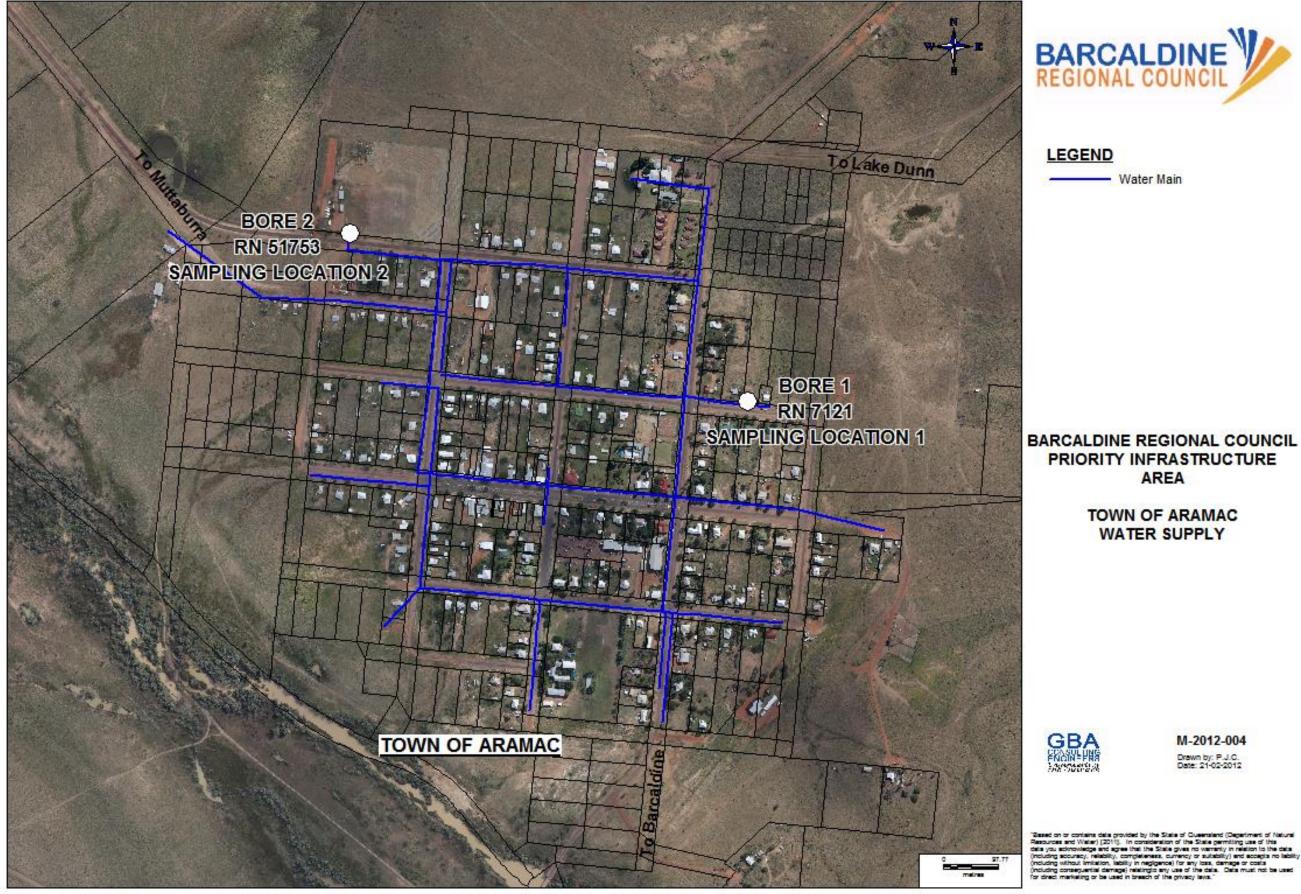
170199-MAP1/01 M-2012-004 M-2012-005 M-2012-006 170199-MAP1/05 Alpha Water Supply Scheme Aramac Water Supply Scheme Barcaldine Water Supply Scheme Jericho Water Supply Scheme Muttaburra Water Supply Scheme

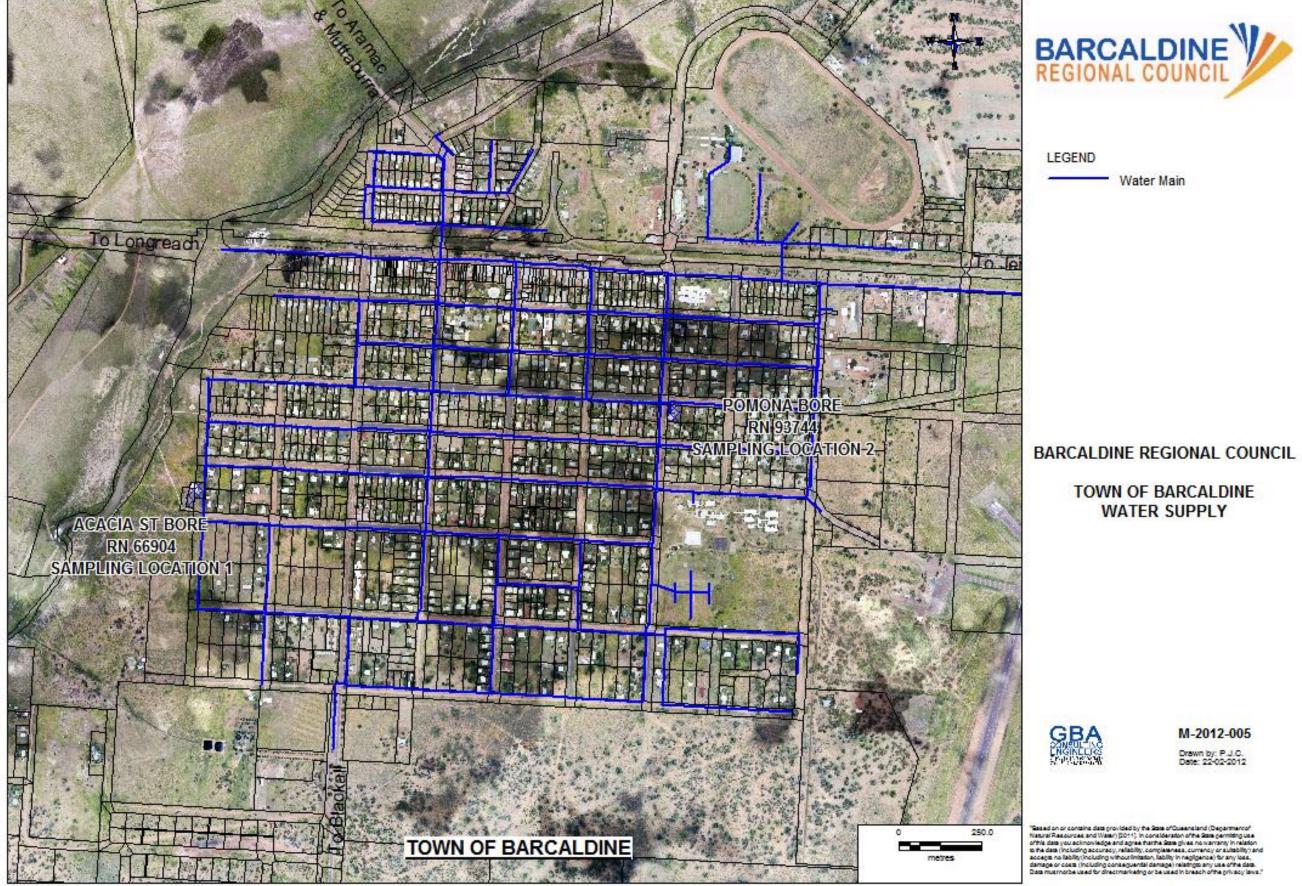
ALPHA_WATER_AREA Legend

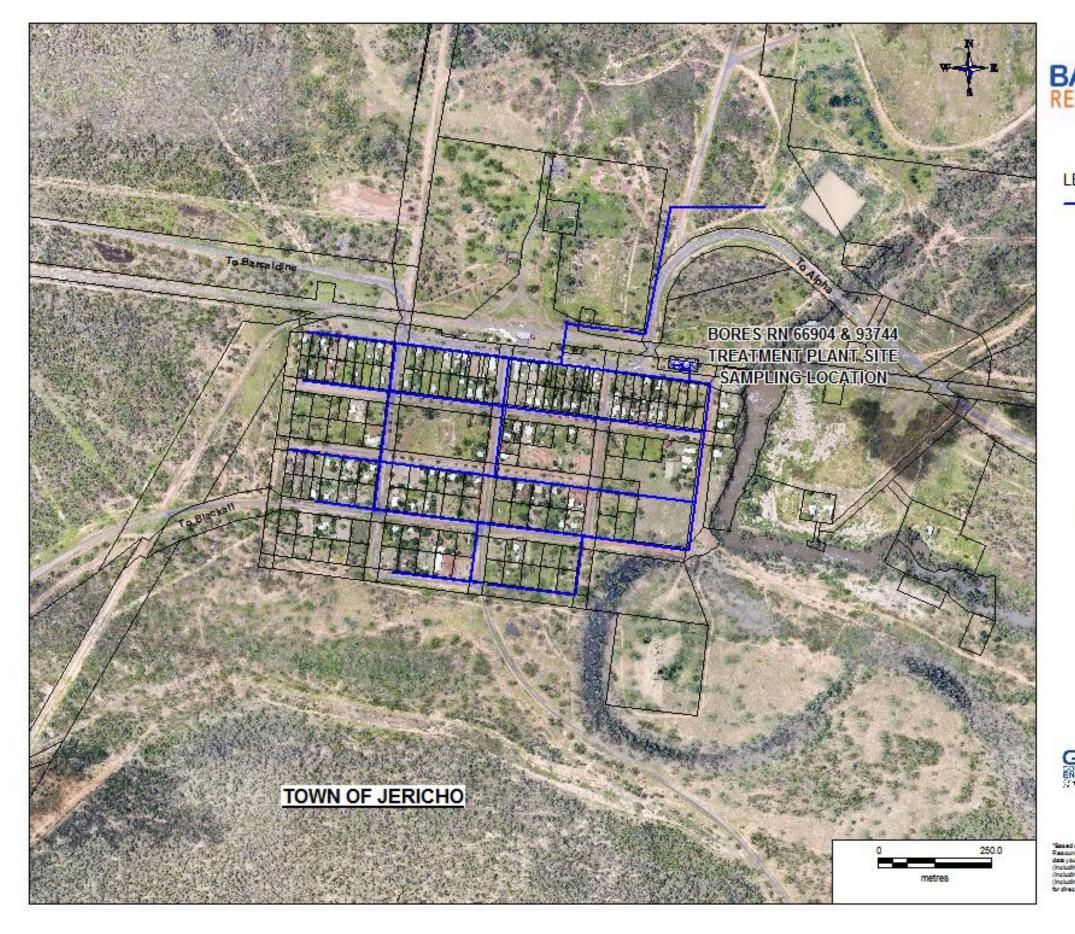
Region

BARCALDINE REGIONAL COUNCIL

PRIORITY INFRASTRUCTURE AREA


TOWN OF ALPHA WATER SUPPLY

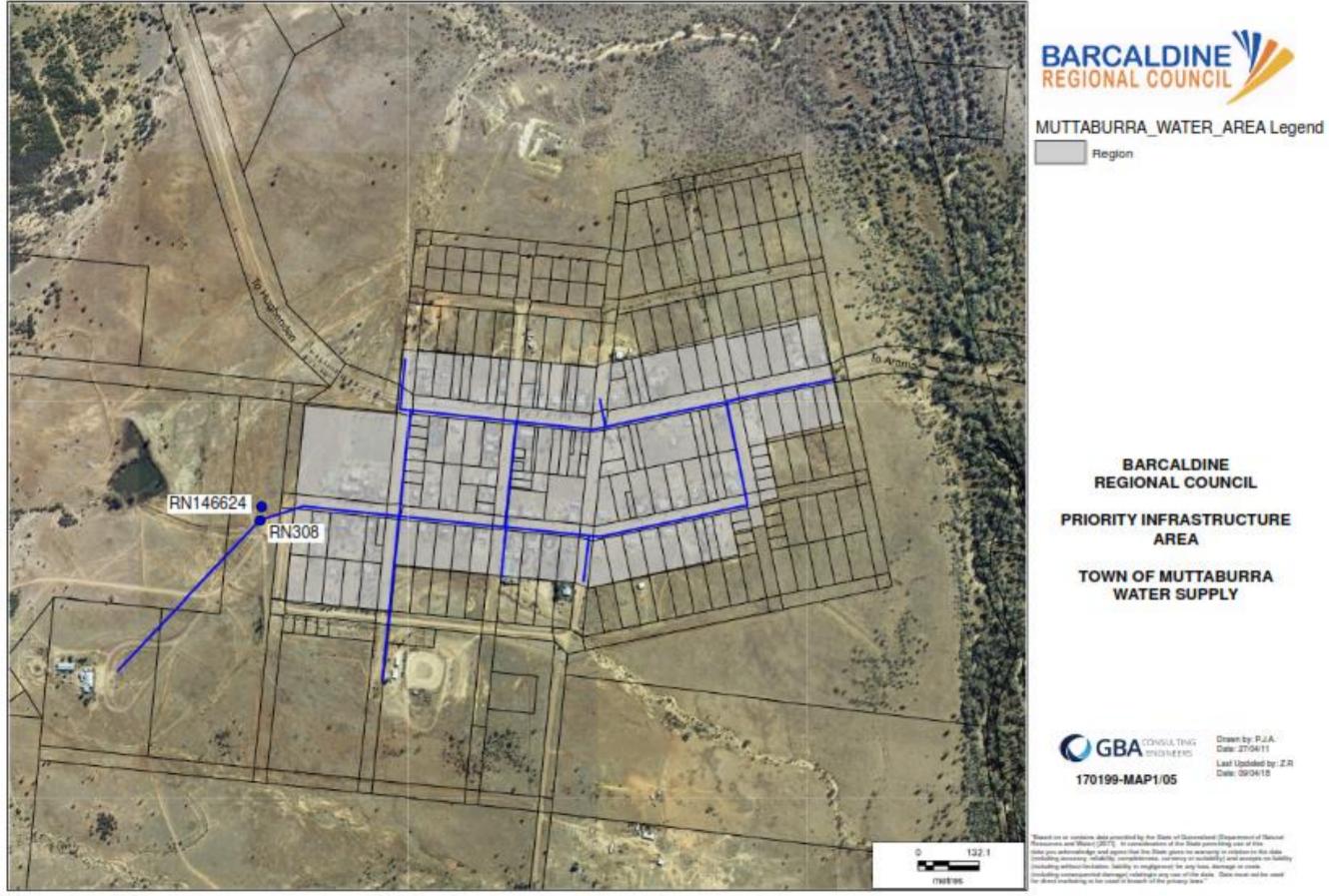



Drawn By P.J.A Date 27/04/11

Updated By: Z.R. Data 10/04/18

of one or constraints data provided Tay New Takate of Charmeniand (Department of Material senite and Material (2011)). It constrained and an of this Datate generating one or of-the much methods and appendent to the Data gives on severably involved anotype to habita data another the second several data and the second severable in the second second second several data and the second sec

- Water Main


BARCALDINE REGIONAL COUNCIL

TOWN OF JERICHO WATER SUPPLY

M-2012-006 Drawn by: P.J.C. Date: 22-02-2012

"Eased on or contains data provided by the State of Queensiand (Departmentof Viatural Resources and Water) (50°+1) in consideration of the State permitting use of this data you acknowledge and agree that the State gives no varianty in relation to the data (including accuracy, relating), complements, currency or suitability and accept no liability (including without initiation, liability in negligence) for any loss, damage or case (including without initiation, liability in negligence) for any loss, damage or case (including consequential damage) relating only use of the data. Case matmorbs used for directimativity or be used in breach of the gives/s fave."

Appendix C

Bore Water Report Cards

Page 17 of 20

25.00

24.50

53.00

25.00

DATE 22/02/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 103198

REGISTRATION DETAILS

				BASIN	1203	LATITUDE 23	-39-53	MAP-SCALE	254	
OFFICE Emeral	d		SU	B-AREA		LONGITUDE 14	6-38-11	MAP-SERIES	м	
DATE LOG RECD				SHIRE	410-BARCALDINE REGION	EASTING 46	2931	MAP-NO	8250	
D/O FILE NO.				LOT	1	NORTHING 73	84311	MAPNAME	ALPHA	
R/O FILE NO.				PLAN	SP104443	ZONE 55		PROG SECTION		
H/O FILE NO.		0	RIGINAL DESCI	RIPTION		ACCURACY SK	ET	PRES EQUIPMENT		
						GPS ACC				
GIS LAT	-23.6	6514819	PARIS	HNAME	91-ALPHA			ORIGINAL BORE NO	MOORE	ST BORE
GIS LNG	146.6	365229	C	OUNTY	BELYANDO			BORE LINE	-	
CHECKED Y			PROPERT	YNAME						
			FIELD LO	CATION				POLYGON		
								RN OF BORE REPLACED		
FACILITY TYPE SF			DATE	DRILLED	08/05/2002			DATA OWNER	DNR	
STATUS EX					TYNDALL, ROY MARTIN			CONFIDENTIAL	Ν	
ROLES WS			DRILL CO	MPANY	AFRAC DRILLING					
			METHOD OF	CONST.						
					CASING D	ETAILS				
	PIPE	DATE	RECORD NUM BER	MATERI	AL DESCRIPTION	MAT SIZE (mm)	SIZE DESC	OUT SIDE DIAM	TOP (m)	BOTTOM (m)
	А	08/05/2002	1	Stainless	Steel	9.500	WT	510	0.00	26.20
	А	08/05/2002	2	Acrylonit	rile Butadiene Styrene			315	0.00	25.00
	А	08/05/2002	3	Stainless	Steel			275	25.00	51.00
	Α	08/05/2002	4	Screen		0.400	AP	275	27.50	29.25
	Α	08/05/2002	5	Screen		0.400	AP	275	32.00	34.80
	А	08/05/2002	6	Screen		0.400	AP	275	45.30	48.30
	Α	08/05/2002	7	Grout				275	0.00	24.00
	Α	08/05/2002	8	Grout				510	0.00	26.00

STRATA LOG DETAILS

118.000 WT

0.00 2.00 RED SANDY CLAY

9 Gravel Pack

10 Bentonite Seal

08/05/2002

08/05/2002

1

А

А

George Bourne & Associates May 2018

Page 18 of 20

DATE 22/02/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 103198

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
2	2.00	3.00	BROWN CLAY
3	3.00	10.00	VERY FINE LIGHT BROWN SAND
4	10.00	12.00	VERY TIGHT, CLAY-BOUND GRAVEL
5	12.00	21.00	LIGHT GREY & BROWN CLAY
6	21.00	23.00	SILTY SAND
7	23.00	24.00	SAND CLAY
8	24.00	25.00	LGHT BROWN AND GREY CLAY
9	25.00	27.00	GREY CLAY
10	27.00	28.00	BROWN SAND
11	28.00	32.00	LGHT GREY AND CREAM CLAY
12	32.00	35.00	SILTY YELLOW SAND
13	35.00	44.00	LGHT GREY AND CREAM CLAY
14	44.00	48.00	VERY FINE SAND
15	48.00	56.00	LGHT GREY CLAY
16	56.00	60.00	GREY GREEN CLAY

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND ****

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORMATION NAME
1	32.00	34.00	SAND					N	SC	TERTIARY - UNDEFINED
2	45.00	48.00	SAND					Y	SC	TERTIARY - UNDEFINED

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2

**** NO RECORDS FOUND ****

Page 19 of 20

DATE 22/02/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 103198

			BORE CONDIT				
			ELEVATION D	ETAILS			
			**** NO RECORDS	FOUND ****			
			WATER ANALYS	SIS PART1			
			**** NO RECORDS	FOUND ****			
			WATER ANALYS	IS PART 2			
			**** NO RECORDS	FOUND ****			
			WATER LEVEL DE	ETAILS			
		*	*** NO RECORDS F				
			WIRE LINE LOG	DETAILS			
			**** NO RECORDS	FOUND ****			
			FIELD MEASUR	EMENTS			
			**** NO RECORDS				
			SPECIAL WATER	ANALYSIS			
			**** NO RECORDS	FOUND ****			
			VALIDATION LOG	6 - PART 1			
REGDET	CASING	STRLOG	AQUIFR	PUMTES	ELVDET	WLVDET	FIELDQ
N 17/10/2005							
			VALIDATION LOG	6 - PART 2			
WATANL	SAMPLE	STRTIG	WIRLOG	MULCND	BRCOND	FPREAD	GNOTES

GENERAL NOTES

**** NO RECORDS FOUND ****

GROUNDWATER DAT	ABASE
-----------------	-------

Page 1 of 4

BORE REPORT

REG NUMBER 103199

DATE 08/05/2018

REGISTRATION DETAILS

			DACIN	1002		20.47			
OFFICE Emera	1.1		BASIN SUB-AREA	1203	LATITUDE 23-		MAP-SCALE		
DATE LOG RECD	a			410-BARCALDINE REGIC	EASTING 462		MAP-SERIES		
D/O FILE NO.			LOT		NORTHING 738		MAP-NO MAP NAME		
R/O FILE NO.				A30115	ZONE 55	4075	PROG SECTION		
H/O FILE NO.		ORIC	GINAL DESCRIPTION	AJUTIJ	ACCURACY PRES EQUIPMENT				
NOTILE NO.					GPS ACC		FRE3 EQUIFMENT		
GIS LAT	-23.	6464045	PARISH NAME	91-ALPHA	OF 3 ACC		ORIGINAL BORE NO		
GIS LNG	146.	6358071	COUNTY	BELYANDO			BORE LINE	-	
CHECKED Y									
							POLYGON		
							RN OF BORE REPLACED		
FACILITY TYPE Sub-Artesian Facility DATE DRILLED						DATA OWNER			
STATUS Existing	9		DRILLERS NAME						
ROLES WS			DRILL COMPANY						
			METHOD OF CONST.						
				CASING D	ETAILS				
	PIP	DATE	RECORD MATERIA	AL DESCRIPTION	MAT SIZE	SIZE DESC	OUTSIDE	TOP	BOTTOM
	Е		NUMBER		(mm)		DIAM (mm)	(m)	(m)
	А	07/05/2002	1 Fibrealas	s Reinforced Plastic	9.500	WT	510	0.00	18.00
	А	07/05/2002	-	rile Butadiene Styrene			275	0.00	17.00
	А	07/05/2002	3 Stainless				275	17.00	34.50
	А	07/05/2002	4 Screen		0.400	AP	275	21.00	26.00
	А	07/05/2002	5 Screen		0.400	AP	275	30.00	33.20
	A	07/05/2002	6 Grout				275	0.00	17.00
	A	07/05/2002	7 Grout				510	0.00	18.40
	А	07/05/2002	8 Gravel P	ack				17.00	36.00
	A	07/05/2002	9 Bentonite	e Seal				17.50	18.00
				STRATA LOG	DETAILS				
RECORD NUMBER		STRATA TOP (m)	STRATA STRAT BOT (m)	TA DESCRIPTION					

DATE 08/05/2018

GROUNDWATER DATABASE

Page 2 of 4

BORE REPORT

REG NUMBER 103199

RECORD NUMBER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
1	0.00	2.00	RED BROWN CLAY
2	2.00	3.00	BROWN SILTY CLAY
3	3.00	7.00	VERY FINE SAND & GRAVEL
4	7.00	9.00	LGHT GREY SANDY CLAY
5	9.00	10.00	ORANGE SILTY CLAY
6	10.00	13.00	GREY AND ORANGE CLAY
7	13.00	16.00	ORANGE SILTY SAND
8	16.00	17.00	LGHT GREY SILTY CLAY
9	17.00	20.00	BROWN AND GREY CLAY
10	20.00	26.00	BROWN AND YELLOW SAND
11	26.00	31.00	GREY SILTY CLAY
12	31.00	33.00	CREAM SAND
13	33.00	36.00	GREY & BROWN SANDY CLAY

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND ****

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL FLOW (m)	QUALITY	YIELD CTR (I/s)	CONDIT	FORMATION NAME
1	21.00	26.00	SAND				Y	SC	TERTIARY - UNDEFINED
2	30.00	33.00	SAND				Y	SC	TERTIARY - UNDEFINED

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

**** NO RECORDS FOUND ****

BORE CONDITION

**** NO RECORDS FOUND ****

George Bourne & Associates May 2018

DATE 08/05/2018

GROUNDWATER DATABASE

Page 3 of 4

BORE REPORT

REG NUMBER 103199

ELEVATION DETAILS

**** NO RECORDS FOUND ****

WATER ANALYSIS PART1

**** NO RECORDS FOUND ****

WATER ANALYSIS PART 2

**** NO RECORDS FOUND ****

**** WATER LEVEL DETAILS NO RECORDS FOUND ****

WIRE LINE LOG DETAILS

**** NO RECORDS FOUND ****

FIELD MEASUREMENTS

**** NO RECORDS FOUND ****

SPECIAL WATER ANALYSIS

**** NO RECORDS FOUND ****

Page 17 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51968

REGISTRATION DETAILS

		BASIN	1203	LATITUDE	23-38-57	MAP-SCALE	104
OFFICE Emer	ald	SUB-AREA		LONGITUDE 146-38-14		MAP-SERIES	M
DATE LOG RECD		SHIRE	410-BARCALDINE REGION EASTING 462997		MAP-NO	8250	
D/O FILE NO. 50-2003		LOT	315 NORTHING 7384549			MAP NAME	ALPHA
R/O FILE NO. L028	-068200C	PLAN	A3011	ZONE	55	PROG SECTION	
H/O FILE NO. L7634B		ORIGINAL DESCRIPTION	A16 SEC 3	ACCURACY	SKET	PRES EQUIPMENT	NE
				GPS ACC			
GIS LAT	-23.649335723	PARISHNAME	91-ALPHA			ORIGINAL BORE NO	NEW MILTON ST BORE
GIS LNG	146.63717535	COUNTY	BELYANDO			BORE LINE	-
CHECKED Y		PROPERTY NAME					
		FIELD LOCATION				POLYGON	
						RN OF BORE REPLACED	103201
FACILITY TYPE SF		DATE DRILLED	22/01/1984			DATA OWNER	
STATUS AU		DRILLERS NAME	BALKEW			CONFIDENTIAL	
ROLES WS		DRILL COMPANY	LONGREACH WELL DRILLIN	NG CO.			
		METHOD OF CONST.	CABLE TOOL				
			CASING D	ETAILS			

			04	SING DETAILS					
PIPE		RECORD NUM BER	MATERIAL DESCRIPTION	MAT SIZE (mm)	SIZE DESC	OUT SIDE DIAM	TOP (m)	BOTTOM (m)	
A	22/01/1984	1	Steel Casing (unspecified)	8.000	WT	219	0.00	27.00	
Α	22/01/1984	2	Steel Casing (unspecified)	8.000	WT	219	29.00	33.00	
Α	22/01/1984	3	Steel Casing (unspecified)	8.000	WT	219	34.00	36.90	
Α	22/01/1984	4	Screen	1.270	AP	219	27.00	29.00	
Α	22/01/1984	5	Screen	1.270	AP	209	33.00	34.00	
Α	22/01/1984	6	Gravel Pack	9.525	GR	406	0.00	39.00	

STRATA LOG DETAILS

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
1	0.00	1.00	TOP SOIL
2	1.00	4.00	SANDY CLAY
3	4.00	5.00	SAND AND GRAVEL

Page 18 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51968

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
4	5.00	8.00	RED SANDY CLAY
5	8.00	17.00	YELLOW SANDY CLAY
6	17.00	19.00	REDDISH CLAY
7	19.00	20.00	SAND AND CLAY
8	20.00	23.00	SAND
9	23.00	25.00	SAND AND CLAY
10	25.00	29.00	SAND
11	29.00	32.00	TIGHT CLAY
12	32.00	33.00	SANDY CLAY
13	33.00	35.00	SAND
14	35.00	37.00	SANDY CLAY
15	37.00	39.00	CLAY

STRATIGRAPHY DETAILS

SOURCE	RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
DNR	1	12.00		TERTIARY SEDIMENTS
DNR	2	12.00		TERTIARY SEDIMENTS
DNR	3	12.00		TERTIARY SEDIMENTS

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD (I/s)	CTR	CONDIT	FORMATION NAME
1	20.00	23.00	SAND	28/01/1984	-16.51	N	SUITABLE	5.00	Υ	UC	TERTIARY - UNDEFINED
2	25.00	29.00	SAND	28/01/1984	-16.51	N	SUITABLE	5.00	Y	UC	TERTIARY - UNDEFINED
3	33.00	35.00	SAND	28/01/1984	-16.51	Ν	SUITABLE	5.00	Y	UC	TERTIARY - UNDEFINED

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

Page 19 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51968

PUMP TEST DETAILS PART 2

**** NO RECORDS FOUND ****

BORE CONDITION

**** NO RECORDS FOUND ****

ELEVATION DETAILS

PIPE	DATE	ELEVATION	PRECISION	DATUM	MEASUREMENT POINT	SURVEY SOURCE
А	22/JAN/84	349.63	SVY	AHD	R	JSC
х	22/JA N/84	349.03	SVY	AHD	N	JSC

WATER ANALYSIS PART1

PIPE	DATE	RD ANALYST	QAN	DEPTH RMK (m)	SRC	COND (uS/cm)	рH	Si (mg/L)	TOTAL IONS	TOTAL SOLIDS	HARD	ALK	Fig. of Merit	SAR	RAH
А	19/03/1981	2 GCL	W1941	PU	GB	1600	7.1	90	897.42	898.47	270	144	0.6	5.2	
Α	24/01/1984	1 GCL	W1536	PU	GB	1950	6.8	66	1116.46	1065.55	288	189	0.5	6.9	
А	25/01/1984	1 GCL	W1534	PU	GB	1950	6.7	67	1107.86	1060.49	285	185	0.5	7.0	
Α	25/01/1984	2 GCL	W1535	PU	GB	2050	6.9	64	1160.36	1107.45	314	189	0.5	6.7	
А	26/01/1984	1 GCL	W1580	PU	GB	1900	6.7	67	1104.36	1054.45	270	189	0.5	7.2	
Α	27/01/1984	1 GCL	W1578	PU	GB	1900	6.5	68	1127.36	1078.45	270	189	0.5	7.2	
Α	28/01/1984	1 GCL	W1579	PU	GB	1850	6.7	67	1101.36	1051.45	270	189	0.5	6.9	
Α	14/06/1985	1 GCL	W2076	PU	GB	1700	6.7	64	1068.02	1007.49	239	201	0.4	7.2	
Α	21/01/1986	1 GCL	W1281	PU	GB	1800	7.1	63	1138.72	1069.56	235	214	0.4	7.9	
А	30/09/1987	1 GCL	W542	PU	GB	1700	7.2	67	1090.74	1033.21	236	201	0.4	7.6	
Α	29/05/1990	1 GCL	W2122	PU	GB	365	8.0	40	286.32	250.07	131	123	2.6	0.9	
Α	12/06/1990	1 GCL	W2224	PU	GB	500	7.4	47	360.50	326.17	134	132	1.2	1.9	
А	14/11/1990	1 GCL	W1156	PU	GB	1550	7.2	70	958.70	911.79	228	189	0.5	6.3	
Α	19/03/1991	1 GCL	W1940	PU	GB	1550	7.7	75	951.82	909.91	240	190	0.5	5.9	
Α	19/03/1991	2 GCL	W1941	PU	GB	1600	7.1	90	897.78	898.83	270	144	0.6	5.2	
А	14/10/1991	1 GCL	W950	PU	GB	1600	7.7	70	1048.24	993.71	227	202	0.4	7.4	
Α	10/12/1991	1 GCL	W	PU	GB	1700	8.0	70	1102.14	1042.52	240	212	0.4	7.6	
Α	20/01/1992	1 GCL	603-6	PU	GB	1650	7.3	70	1042.34	990.35	221	197	0.4	7.6	
Α	09/03/1992	1 GCL	W2270	PU	GB	1750	7.2	70	1052.54	1000.55	232	197	0.4	7.6	
Α	27/04/1992	1 GCL	W	PU	GB	1150	7.6	65	736.21	689.38	125	181	0.3	7.4	1.13
А	07/07/1992	1 GCL	W	PU	GB	1700	7.2	80	1073.82	1024.20	222	210	0.4	7.9	

Page 20 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

PIPE	DA	TE	RD ANAL	YST	QAN	DEPTH R (m)	MIK SRC	COND (uS/cm)	pН	Si (mg/L)	TOTAL IONS		TAL LIDS	HARD	ALK	Fig. of Merit	SAR	RAH
А	24/08/	1992	1 GCL		W562	P	J GB	1700	7.9	7575	1044.75	849	0.13	220	211	0.4	7.6	
А	01/12/	1992	1 GCL		W1603	P	J GB	1650	8.1	80	989.68	94	7.69	210	200	0.4	7.2	
А	12/10/	1993	1 GCL		W788	P	J GB	1600	7.8	70	1023.77	97	4.32	217	194	0.4	7.5	
А	22/07/	1996	1 GCL		192934		GB	1950	7.0	70	1202.32	114	0.16	280	214	0.4	7.7	
А	17/02/	1997	1 GCL		W1682	P	J GB	1800	7.1	65	1169.10	110	4.48	272	209	0.4	7.4	
А	01/07/	1998	1 GCL		JER013	P	J GB	1850	7.2		1169.26	102	6.94	250	230	0.4	8.0	
А	13/02/	2001	1 GCL		JER002	34.00 P	J GB	1800	7.3	70	1152.59	108	2.81	251	227	0.4	8.0	
WATER ANALYSIS PART 2																		
PIPE DA	TE	RD	Na	к	Ca	Mg	Mn	HCO3	Fe	CO3	CI	F	NO3	S 04	Zı	n Al	в	Cu
A 19/03/	/1981	2	195.0	7.0	44.0	39.0	0.01	175.0	0.01	0.2	365.0	0.20	40.0	32.0				
A 24/01/	1984	1	270.0	11.0	46.0	42.0	0.01		0.05	0.1	420.0	0.30	95.0	2.0				
A 25/01/	/1984	1	270.0	10.5	45.0	42.0	0.01	225.0	0.05	0.1	425.0	0.20	88.0	2.0				
A 25/01/		2	275.0	12.0	50.0	46.0	0.01		0.05	0.1	440.0	0.20	105.0	2.0				
A 26/01/		1	270.0	11.0	42.0	40.0	0.01		0.05	0.1	400.0	0.20	81.0	30.0				
A 27/01/		1	270.0	11.0	42.0	40.0	0.01		0.05	0.1	395.0	0.20	80.0	59.0				
A 28/01/		1	260.0	11.0	42.0	40.0	0.01		0.05	0.1	390.0	0.20	74.0	54.0				
A 14/06/		1	255.0	9.6	38.0	35.0	0.01		0.01	0.1	360.0	0.30	69.0	56.0				
A 21/01/		1	280.0	11.0	38.0	34.0	0.01		0.01	0.3	385.0	0.40	78.0	52.0				
A 30/09/		1	270.0	10.0	37.0	35.0	0.01		0.03	0.3	385.0	0.40	66.0	42.0				
A 29/05/		1	23.0	12.0	31.0	13.0	0.01		0.01	0.1	43.0	0.20	5.5	8.5				
A 12/06/		1	50.0	13.0	29.0	15.0		160.0		0.2	66.0	0.30	16.0	11.0				
A 14/11/		1	220.0	11.5	34.5	34.5	0.04	230.0	0.04	0.3	320.0	0.40	68.0	39.5				
A 19/03/		1	210.0	8.7	40.0	34.0	0.01		0.01	0.8	320.0	0.30	68.0	40.0	0.0	0.05	0.00	0.00
A 19/03/ A 14/10/		2	195.0 255.0	7.0 13.5	44.0 35.5	39.0 33.5	0.01 0.02		0.01 0.02	0.2 0.9	365.0 335.0	0.20 0.30	40.0 84.0	32.0 45.5	0.0	3 0.05	0.20	0.08
			255.0															
A 10/12/ A 20/01/		1	260.0	12.0 11.5	37.5 34.0	35.5 33.0	0.02 0.02		0.02	1.7 0.4	345.0 335.0	0.40 0.40	98.0 82.0	47.0 46.0				
A 20/01/		1	265.0	11.5	34.0	33.0 34.5	0.02		0.02	0.4	330.0	0.40	88.0	40.0				
A 09/03/ A 27/04/		1	190.0	13.0	17.0	20.0	0.02		0.02	0.5	195.0	0.40	49.0	31.0				
A 07/07/		1	270.0	11.0	34.5	33.0	0.02		0.10	0.0	340.0	0.40	49.0	44.5				
A GHON	1002		210.0	11.0	54.5	55.0	0.02	200.0	0.10	0.0	040.0	0.40	00.0	44.5				

Page 21 of 32

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51968

PIPE DATE	RD	Na	к	Са	Мg	Mn	HC O3	Fe	CO3	CI	F	NO3	\$ 04	Zn	AI	В	Cu
A 24/08/1992	1	260.0	11.5	33.0	33.5	0.02	255.0	0.10	1.4	325.0	0.30	81.0	43.5	0.03	0.05	0.30	0.05
A 01/12/1992	1	240.0	10.0	32.0	31.5	0.02	240.0	0.02	1.9	315.0	0.30	75.0	43.5	0.04	0.05	0.30	0.05
A 12/10/1993	1	255.0	11.5	35.0	31.5	0.02	235.0	0.03	1.0	340.0	0.30	69.0	45.0	0.02	0.05	0.30	0.05
A 22/07/1996	1	295.0	12.5	43.0	42.0		260.0		0.2	425.0	0.30	71.0	53.0	0.02		0.30	
A 17/02/1997	1	280.0	13.0	41.5	41.0		255.0		0.2	420.0	0.40	67.0	51.0				
A 01/07/1998	1	290.0	12.0	39.0	37.0	0.02	280.0	0.02	0.3	390.0	0.40	67.0	53.0	0.02	0.05	0.40	0.05
A 13/02/2001	1	290.0	12.5	37.5	38.0	< 0.02	275.0	0.04	0.4	375.0	0.40	70.0	53.0	0.19	< 0.05	0.44	< 0.05

WATER LEVEL DETAILS											
PIPE DATE MEASURE N/R RMK	LOG PIPE	DATE	MEASURE N/R RM	IK LOG	PIPE DATE	MEASURE N/R (m)	RMK LOG				

A 24/01/1984 -15.91 R

WIRE LINE LOG DETAILS

DATE	RUN	OPERATOR	TYPE	SOURCE	тор	BOTTOM COMMENTS
14/05/2001	1	B ISBISTER	CALU	ALPHA	-1.44	28.56

FIELD MEASUREMENTS

**** NO RECORDS FOUND ****

SPECIAL WATER ANALYSIS

PIPE A DATE 20/03/2001 REC 1

VARIABLE *********	Electrical Conductivity @ 25C		
MEASUREMENT 1626.0000	0 UNITS Microsiemens/cm		
DEPTH 34.00			
WRANAL NO 1	METHOD PU	PRESERVATIVES	PROJECTS
BOTTLE 1	ANALYST XXX	NL	PR
	COL AUTH PR		
RECD AT LAB	SOURCE GB		
COMMENT			

Page 22 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

		PIPE A	DATE	20/03/2001	REC	1		
VARIABLE **	*******	Nitrate	as NO3					
M EA SUREM ENT	29.00000		UNITS	Milligrams/Litre	е			
DEPTH	34.00							
WRANAL NO 1		MI	ETHOD	PU			PRESERVATIVES	PROJECTS
BOTTLE 1		AN/	ALYST 3	XXX			NL	PR
		COL	AUTH	PR				
RECD AT LAB		S (OURCE	GB				
COMMENT								
		PIPE A	DATE	20/03/2001	REC	2		
VARIABLE **	*******	Electric	al Cond	uctivity @ 250)			
M EA SUREM ENT	1821.000	00	UNITS	Microsiemens	/cm			
DEPTH	34.00							
WRANAL NO 2		MI	ETHOD	PU			PRESERVATIVES	PROJECTS
BOTTLE 2		AN/	ALYST 3	XXX			NL	PR
		COL	AUTH	PR				
RECD AT LAB		S	OURCE	GB				
COMMENT								
		PIPE A	DATE	20/03/2001	REC	2		
VARIABLE **	******	Nitrate	as NO3					
M EA SUREM ENT	53.00000		UNITS	Milligrams/Litre	е			
DEPTH	34.00							
WRANAL NO 2		M	ETHOD	PU			PRESERVATIVES	PROJECTS
BOTTLE 2		AN/	ALYST 3	XXX			NL	PR
		COL	AUTH	PR				
RECD AT LAB		S (OURCE	GB				
COMMENT								

Page 23 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

	PIPE A	DATE 20/03/2001	REC	3		
VARIABLE ****	Elec	trical Conductivity @ 250	;			
M EA SUREM ENT	1848.00000	UNITS Microsiemens	/cm			
DEPTH	34.00					
WRANAL NO 3	1	METHOD PU			PRESERVATIVES	PROJECTS
BOTTLE 3	А	NALYST XXX			NL	PR
	C	DL AUTH PR				
RECD AT LAB		SOURCE GB				
COMMENT						
	PIPE A	DATE 20/03/2001	REC	3		
VARIABLE ****	Nitra	te as NO3				
M EA SUREM ENT	61.00000	UNITS Milligrams/Litre	e			
DEPTH	34.00					
WRANAL NO 3	I	METHOD PU			PRESERVATIVES	PROJECTS
BOTTLE 3	А	NALYST XXX			NL	PR
	C	DL AUTH PR				
RECD AT LAB		SOURCE GB				
COMMENT						
	PIPE A	DATE 21/03/2001	REC	1		
VARIABLE ****	Elec	trical Conductivity @ 250	;			
M EA SUREM ENT	1903.00000	UNITS Microsiemens	/cm			
DEPTH	34.00					
WRANAL NO 4	I	METHOD PU			PRESERVATIVES	PROJECTS
BOTTLE 4	A	NALYST XXX			NL	PR
	C	DL AUTH PR				
RECD AT LAB		SOURCE GB				

Page 24 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

	PIPE A DATE 21/03/2001 REC	1		
VARIABLE *********	Nitrate as NO3			
MEASUREMENT 59.00000	0 UNITS Milligrams/Litre			
DEPTH 34.00				
WRANAL NO 4	METHOD PU		PRESERVATIVES	PROJECTS
BOTTLE 4	ANALYST XXX		NL	PR
	COL AUTH PR			
RECD AT LAB	SOURCE GB			
COMMENT				
	PIPE A DATE 21/03/2001 REC	1		
VARIABLE *********	Electrical Conductivity @ 25C			
MEASUREMENT 1905.000	000 UNITS Microsiemens/cm			
DEPTH 34.00				
WR ANAL NO 5	METHOD PU		PRESERVATIVES	PROJECTS
BOTTLE 5	ANALYST XXX		NL	PR
	COL AUTH PR			
RECD AT LAB	SOURCE GB			
COMMENT				
	PIPE A DATE 21/03/2001 REC	1		
VARIABLE *********	Nitrate as NO3			
MEASUREMENT 57.00000	0 UNITS Milligrams/Litre			
DEPTH 34.00				
WR ANAL NO 5	METHOD PU		PRESERVATIVES	PROJECTS
BOTTLE 5	ANALYST XXX		NL	PR
	COL AUTH PR			
RECD AT LAB	SOURCE GB			

Page 25 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51968

	PIPI	EA DATE 21	/03/2001 REC	1				
VARIABLE	*****	Electrical Conduct	ivity @ 25C					
M EA SUREM ENT	1916.00000	UNITS Mi	crosiemens/cm					
DEPTH	34.00							
WR ANAL NO) 6	METHOD PU			PRESERVATIVE	S PF	ROJECTS	
BOTTLE	E 6	ANALYST XXX	C		NL	PR		
		COL AUTH PR						
RECD AT LAB	3	SOURCE GB						
COMMENT	r							
	PIP	EA DATE 21	/03/2001 REC	1				
VARIABLE		Nitrate as NO3						
M EA SUREM ENT	61.00000	UNITS MI	ligrams/Litre					
DEPTH	I 34.00		-					
WR ANAL NO) 6	METHOD PU			PRESERVATIVE	S PF	ROJECTS	
BOTTLE	5 6	ANALYST XXX	(NL	PR		
		COL AUTH PR						
RECD AT LAB	3	SOURCE GB						
COMMENT	T							
				VALIDATION LO	<u>G - PART 1</u>			
	REGDET	CASING	STRLOG	AQUIFR	PUMTES	ELVDET	WLVDET	FIELDQ
	Y 05/04/1993	Y 05/04/1993	Y 05/04/1993	Y 05/04/1993	Y 05/04/1993	Y 05/04/1993	Y 05/04/1993	Y 05/04/1993
				VALIDATION LO	<u>G - PART 2</u>			
	WATANL	SAMPLE	STRTIG	WIRLOG	MULCND	BRCOND	FPREAD	GNOTES
	Y 19/04/2001		Y 05/04/1993		Y 05/04/1993			

GENERAL NOTES

Page 26 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51968

**** NO RECORDS FOUND ****

Page 4 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51402

REGISTRATION DETAILS

				BASIN 1203		LATITUDE		MAP-SCALE		
OFFICE Eme	raid		SUB	-AREA		LONGITUDE		MAP-SERIES		
DATE LOG RECD					ARCALDINE REGION	EASTING		MAP-NO		
D/O FILE NO. 50-2				LOT 132		NORTHING		MAPNAM		
R/O FILE NO. L02				PLAN BEL12		ZONE		PROG SECTION		
H/O FILE NO. 072	29	O	RIGINAL DESCRI	IPTION TOWN	NOF ALPHA	ACCURACY	SKET	PRES EQUIPMENT	TE	
	~~ ~~		DADIOU		D (14)	GPS ACC				
GIS LAT		3356909		NAME 91-AL				ORIGINAL BORE NO		TOWN NO. 2
GIS LNG	146.63	8834857		DUNTY BELY	ANDO			BORE LINE	-	
CHECKED Y			PROPERTY							
			FIELD LOC	ATION				POLYGON		
			0.475.0		4000			RN OF BORE REPLACED		
FACILITY TYPE SF				RILLED 26/05	/1980				-	
STATUS AU			DRILLERS			10.00		CONFIDENTIAL		
ROLES WS					REACH WELL DRILLIN	NG CO.				
			METHOD OF C	CONST. CABL	ETOOL					
					CASING DE	ETAILS				
	PIPE	DATE		MATERIAL DES	CRIPTION	MAT S	ZE SIZE DE		ТОР	BOTTOM
			NUMBER			(m	m)	DIAM	(m)	(m)
	А	26/05/1980	1 8	Steel Casing (ur	nspecified)	6.3	50 WT	219	0.00	29.30
	Α	26/05/1980	2 \$	Screen		1.2	70 AP	219	29.30	31.30
	Α	26/05/1980	3 5	Steel Casing (ur	nspecified)	6.3	50 WT	219	31.30	35.50
	А	26/05/1980	4 5	Screen		1.2	70 AP	219	35.50	37.50
	А	26/05/1980	5 (Gravel Pack		4.7	'50 GR		0.00	39.90
					STRATA LOG					
		ECORD UMBER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPT	TON				
	IN	1	0.00		SOL					
		2	1.20		SANDY CLAY					
		3	2.70		CLAY SAND & GRA	VE				
		4	6.00		SAND & SMALL GRA					
		*	0.00	1.90	SAND & SMALL OR					

Page 5 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51402

RECORD NUM BER	STRATA TOP (m)		STRATA DESCRIPTION
5	7.90	8.80	SOFT WHITE SANDSTONE
6	8.80	11.80	CLAY & SAND
7	11.80	20.10	SANDY CLAY
8	20.10	22.20	SOFT SANDSTONE
9	22.20	22.80	SAND - WATER
10	22.80	24.00	SANDSTONE
11	24.00	24.60	SAND - WATER
12	24.60	25.60	CLAY
13	25.60	28.90	SANDY CLAY
14	28.90	31.00	SANDSTONE - WATER
15	31.00	33.20	SAND - WATER
16	33.20	34.40	SANDSTONE
17	34.40	35.60	SOFT SANDSTONE
18	35.60	38.70	SAND - WATER
19	38.70	39.90	SOFT SANDSTONE

STRATIGRAPHY DETAILS

SOURCE	RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
DNR	1	20.00		UNDIFF TERT

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORM ATION NAME
1	36.00	39.00	SDST	26/05/1980	-17.20	N	POTABLE	16.40 Y	SC	TERTIARY - UNDEFINED

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2

**** NO RECORDS FOUND ****

Page 6 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51402

BORE CONDITION

**** NO RECORDS FOUND ****

ELEVATION DETAILS

PIPE	DATE	ELEVATION	PRECISION	DATUM	MEASUREMENT POINT	SURVEY SOURCE
Α	26/MAY/80	351.50	SVY	AHD	R	JSC
Х	26/MAY/80	350.30	SVY	AHD	N	JSC

WATER ANALYSIS PART1

PIPE	DATE	RD ANALYST	QAN	DEPTH RMK (m)	SRC	COND (US/cm)	рH	Si (mg/L)	TOTAL IO NS	TOTAL SOLIDS	HARD	ALK	FIG. OF MERIT	SAR	RAH
А	26/05/1980	1 GCL	86250	39.00 PU	GB	1890	7.9	80	1104.00	1099.62	314	137	0.6	6.2	
А	27/05/1980	1 GCL	86252	39.00 PU	GB	1780	7.2	85	1153.40	1153.51	314	137	0.6	6.1	
Α	10/04/1981	1 GCL	2502	PU	GB	1700	6.6	85	1094.17	1098.35	316	132	0.6	5.7	
А	11/04/1981	1 GCL	2499	PU	GB	1650	6.7	85	1041.36	1039.44	299	142	0.6	5.6	
А	12/04/1981	1 GCL	2501	PU	GB	1630	6.8	85	1034.26	1034.88	294	138	0.6	5.7	
Α	13/04/1981	1 GCL	2553	PU	GB	1650	6.6	85	1035.16	1035.27	298	139	0.6	5.7	
А	20/12/1983	1 GCL	W1344	PU	GB	1850	6.5	73	1088.26	1072.31	308	144	0.6	6.1	
А	11/02/1984	1 GCL	W1632	PU	GB	1750	6.7	75	1025.36	1013.95	280	140	0.5	6.1	
А	03/04/1984	1 GCL	W2074	PU	GB	1750	6.6	77	1041.36	1021.78	280	156	0.5	6.1	
Α	26/06/1984	1 GCL	W2511	PU	GB	1750	6.5	83	1023.26	1019.85	287	139	0.6	6.0	
Α	11/12/1984	1 GCL	W1100	PU	GB	2000	6.6	77	1192.91	1147.92	326	197	0.6	6.5	
А	14/06/1985	1 GCL	W2077	PU	GB	1750	7.9	64	1134.47	1051.06	269	240	0.5	6.9	
Α	30/09/1987	1 GCL	W541	PU	GB	1550	6.7	74	925.48	913.07	246	140	0.5	6.0	
Α	29/05/1990	1 GCL	W2121	PU	GB	1050	7.5	65	729.95	667.88	310	206	1.4	2.6	
Α	29/06/1990	1 GCL	W2229	PU	GB	990	7.3	65	712.62	650.54	308	206	1.4	2.5	
А	14/11/1990	1 GCL	W1155	PU	GB	1650	7.4	65	1009.90	937.66	438	222	1.4	2.9	
А	14/10/1991	1 GCL	W949	PU	GB	1550	6.9	80	938.84	929.89	253	144	0.5	6.0	
А	10/12/1991	1 GCL	W	PU	GB	1650	7.2	85	949.45	942.96	262	148	0.5	6.1	
Α	20/01/1992	1 GCL	W1858	PU	GB	1650	7.0	80	964.84	955.89	257	144	0.5	6.2	
А	09/03/1992	1 GCL	W2269	PU	GB	1650	6.8	85	956.84	955.43	255	140	0.5	6.3	
А	27/04/1992	1 GCL	W2635	PU	GB	1600	6.8	85	950.37	946.42	241	144	0.5	6.7	
А	07/07/1992	1 GCL	W	PU	GB	1550	7.0	90	926.92	925.43	241	148	0.5	6.3	
А	24/08/1992	1 GCL	W558	PU	GB	1650	7.2	90	924.34	925.39	248	144	0.5	6.1	
Α	01/12/1992	1 GCL	W1602	PU	GB	1650	7.9	90	946.96	950.55	255	141	0.5	6.0	

of 32

Page 7

GROUNDWATER DATABASE

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

A A	22/07/					(m)		SRC	COND (uS/cm)	рH	Si (mg/L)	TOTAL IONS	то s o	LIDS	HARD	ALK	MERIT	SAR	RAH
Δ		1996	1 GCL		192933			GB	1500	6.8	80	905.00	89	6.05	232	144	0.5	6.3	
~	17/02/	1997	1 GCL		W1683		PU	GB	1400	6.9	65	854.70	81	8.04	209	164	0.5	6.3	
А	01/07/	1998	1 GCL		JER011		PU	GB	1450	6.7		866.84	77	5.35	220	148	0.5	6.0	
Α	20/10/	1999	1 GCL		201750		PU	GB	1594	7.7	79	983.56	96	6.50	265	156	0.5	6.2	0.00
А	13/03/	2001	1 GCL		JER005		PU	GB	1350	6.8	85	769.90	77	3.57	207	132	0.5	5.6	
								Ŋ	WATER ANAL	YSIS P	ART 2								
PIPE D	ATE	RD	Na	к	Ca	Mg	N	In	HCO3	Fe	CO3	CI	F	NO3	S O4	Zn	AI	в	Cu
A 26/05	5/1980	1	252.0	12.0	50.0	46.0			166.0		0.8	437.0	0.20	104.0	36.0				
A 27/05	5/1980	1	248.0	12.0	50.0	46.0			167.0		0.2	424.0	0.20	172.0	34.0				
A 10/04	4/1981	1	234.0	12.0	49.0	47.0	0.	02	159.0 0	0.05	1.0	440.0	0.10	110.0	42.0				
A 11/04	4/1981	1	224.0	12.0	47.0	44.0	0.	D1	171.0 0	0.05	1.0	420.0	0.30	85.0	37.0				
A 12/04	4/1981	1	224.0	12.0	45.0	44.0	0.	01	166.0 0	0.05	1.0	420.0	0.20	85.0	37.0				
A 13/04	4/1981	1	226.0	12.0	45.0	45.0	0.	01	167.0 0	0.05	1.0	423.0	0.10	80.0	36.0				
A 20/12	2/1983	1	245.0	12.0	49.0	45.0	0.	D1	175.0 0	0.05	0.0	425.0	0.20	94.0	43.0				
A 11/02	2/1984	1	235.0	11.0	43.0	42.0	0.	D1	170.0 0	0.05	0.1	420.0	0.20	69.0	35.0				
A 03/04	4/1984	1	235.0	11.0	43.0	42.0	0.	D1	190.0 0	0.05	0.1	420.0	0.20	65.0	35.0				
A 26/06	6/1984	1	235.0	11.0	44.0	43.0	0.	D1	170.0 0).05	0.0	420.0	0.20	60.0	40.0				
A 11/12	2/1984	1	270.0	13.5	46.5	51.0	0.	D1	240.0 0	0.10	0.1	480.0	0.20	53.0	38.5				
A 14/06	6/1985	1	260.0	9.4	55.0	32.0	0.	03	290.0 0).14	1.6	365.0	0.30	67.0	54.0				
A 30/09	9/1987	1	215.0	10.0	39.0	36.0	0.	D1	170.0 0).17	0.1	380.0	0.20	46.0	29.0				
A 29/05	5/1990	1	105.0	24.0	60.0	39.0	0.	03	250.0 0	0.02	0.5	215.0	0.40	13.0	23.0				
A 29/06	6/1990	1	100.0	26.0	59.0	39.0	0.	D1	250.0 0).01	0.3	205.0	0.40	9.9	23.0				
A 14/11	1/1990	1	140.0	27.5	70.0	64.0			270.0		0.5	350.0	0.40	40.0	47.5				
A 14/10	0/1991	1	220.0	14.0	38.5	38.0	0.	02	175.0 0).02	0.1	375.0	0.20	46.0	32.0				
A 10/12	2/1991	1	225.0	12.0	40.5	39.0	0.	02	180.0 0	0.03	0.2	375.0	0.20	46.5	31.0				
A 20/01	1/1992	1	230.0	12.0	39.5	38.5	0.	02	175.0 0	0.02	0.1	385.0	0.20	50.0	34.5				
A 09/03	3/1992	1	230.0	11.0	39.5	38.0	0.	02	170.0 0	0.02	0.1	385.0	0.20	49.5	33.5				
A 27/04	4/1992	1	240.0	12.0	39.0	35.0	0.	04	175.0 0	0.03	0.1	370.0	0.20	43.0	36.0				
A 07/07	7/1992	1	225.0	11.0	37.0	36.0	0.	02	180.0 0).10	0.1	360.0	0.20	47.0	30.5				
A 24/08	8/1992	1	220.0	11.5	37.5	37.5	0.	02	175.0 0	0.10	0.2	365.0	0.20	47.0	30.0	0.02	2 0.05	0.20	0.05

Page 8 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51402

PIPE DATE	E RD	Na	ĸ	Ca	Mg	Mn	HCO3	Fe	CO3	CI	F	NO3	S O4	Zn	AI	В	Cu
A 01/12/19	92 1	220.0	10.5	38.5	38.5	0.02	170.0	0.02	0.9	385.0	0.20	50.0	33.0	0.02	0.05	0.20	0.05
A 22/07/19	96 1	220.0	10.5	36.0	34.5		175.0		0.1	355.0	0.20	42.5	31.0			0.20	
A 17/02/19	97 1	210.0	9.8	33.5	30.5		200.0		0.1	330.0	0.30	12.0	28.5				
A 01/07/19	98 1	205.0	9.6	35.5	32.0	0.02	180.0	0.02	0.1	330.0	0.20	43.0	31.0	0.10	0.05	0.20	0.05
A 20/10/19	99 1	232.1	10.3	41.3	39.4	0.00	189.0	0.00	0.7	387.3	0.23	46.9	36.4	0.03	0.02	0.20	0.01
A 13/03/20	01 1	185.0	8.7	31.5	31.0	0.03	160.0	0.03	0.1	300.0	0.20	28.5	24.5	0.02	< 0.05	0.22	< 0.05
							WATER LEV		16								
PIPE	DATE	MEASUR			OG	PIPE		MEASUR		RMK LOG		PIPE	DATE	MEASI	DE N/D	RMK LO	c
PIPE	DATE	MEASURI			.00	PIPE	DATE	MEASUR		NWIK LUG		PIPE	DATE	(m)		NWIN LO	G
														(,			
А	26/05/1980) -17.10	R			Α	09/03/2000	-19.45	R			А	28/02/2002	-19.48	R		
А	31/08/2005	5 -20.70	R			Α	30/09/2005	-20.30	R			Α	31/10/2005	-20.70	R		
А	30/11/2005	5 -20.30	R			Α	31/12/2005	-20.70	R			А	28/02/2006	-19.75	R		
А	31/03/2006	6 -19.25	R			Α	31/05/2006	-19.65	R			Α	31/07/2006	-19.65	R		
А	31/08/2006	6 -19.75	R			А	30/09/2006	-19.95	R			Α	31/10/2006	-20.06	R		
А	30/11/2006	6 -19.55	R			Α	31/01/2007	-19.65	R			А	31/03/2007	-19.65	R		
А	30/04/2007	-19.75	R			А	31/07/2007	-19.65	R								

WIRE LINE LOG DETAILS

DATE	RUN	OPERATOR	TYPE	SOURCE	ТОР	BOTTOM COMMENTS
15/05/2001	1	B ISBISTER	CALU	ALPHA	24.14	30.99
15/05/2001	2	B ISBISTER	CALU	ALPHA	46	30.84
15/05/2001	1	B ISBISTER	GR	ALPHA	-1.04	30.86

FIELD MEASUREMENTS

**** NO RECORDS FOUND ****

SPECIAL WATER ANALYSIS

VALIDATION LOG - PART 1

REGDET	CASING	STRLOG	AQUIFR	PUMTES	ELVDET	WLVDET	FIELDQ

Page 9 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

	PIPE A	DATE 20/03/2001	REC	1		
VARIABLE *******	*** Electric	al Conductivity @ 25C				
MEASUREMENT 14	35.00000	UNITS Microsiemens/	cm			
DEPTH 38	3.70					
WRANAL NO 1	ME	THOD PU			PRESERVATIVES	PROJECTS
BOTTLE 1	ANA	LYST XXX			NL	PR
	COL	AUTH PR				
RECD AT LAB	SC	URCE GB				
COMMENT						
	PIPE A	DATE 20/03/2001	REC	1		
VARIABLE *******	*** Nitrate	as NO3				
MEASUREMENT 35	.00000	UNITS Milligrams/Litre	•			
DEPTH 38	3.70					
WRANAL NO 1	ME	THOD PU			PRESERVATIVES	PROJECTS
BOTTLE 1	ANA	LYST XXX			NL	PR
	COL	AUTH PR				
RECD AT LAB	SC	URCE GB				
COMMENT						
	PIPE A	DATE 20/03/2001	REC	1		
VARIABLE *******	*** Electric	al Conductivity 🏾 @ 25C				
MEASUREMENT 14	74.00000	UNITS Microsiemens/	cm			
DEPTH 38	3.70					
WRANAL NO 2	ME	THOD PU			PRESERVATIVES	PROJECTS
BOTTLE 2	ANA	LYST XXX			NL	PR
	COL	AUTH PR				
RECD AT LAB	so	URCE GB				
COMMENT						

Page 10 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

	PIPEA DATE 2	20/03/2001 REC	1		
VARIABLE *********	Nitrate as NO3				
MEASUREMENT 40.0000	0 UNITS M	/lilligrams/Litre			
DEPTH 38.70					
WRANAL NO 2	METHOD PL	J		PRESERVATIVES	PROJECTS
BOTTLE 2	ANALYST XX	x		NL	PR
	COL AUTH PF	2			
RECD AT LAB	SOURCE G	3			
COMMENT					
	PIPE A DATE 2	21/03/2001 REC	1		
VARIABLE *********	Electrical Conduc	ctivity @ 25C			
MEASUREMENT 1608.00	000 UNITS M	/licrosiemens/cm			
DEPTH 38.70					
WR ANAL NO 3	METHOD PL	J		PRESERVATIVES	PROJECT S
BOTTLE 3	ANALYST XX	x		NL	PR
	COL AUTH PF	2			
RECD AT LAB	SOURCE G	3			
COMMENT					
	PIPE A DATE 2	21/03/2001 REC	1		
VARIABLE **********	Nitrate as NO3				
MEASUREMENT 41.0000	0 UNITS M	/lilligrams/Litre			
DEPTH 38.70					
WR ANAL NO 3	METHOD PL	J		PRESERVATIVES	PROJECTS
BOTTLE 3	ANALYST XX	x		NL	PR
	COL AUTH PF	R			
RECD AT LAB	SOURCE GE	3			
COMMENT					

Page 11 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

VARIABLE ********* Electrical Conductivity @ 25C MEASUREMENT 1632.00000 UNITS Microsiemens/cm DEPTH 38.70	
DEPTH 38.70	
bern ouro	
WR ANAL NO 4 METHOD PU PRESERVATIVES	PROJECTS
BOTTLE 4 ANALYST XXX NL	PR
COL AUTH PR	
RECD AT LAB SOURCE GB	
COMMENT	
PIPE A DATE 21/03/2001 REC 1	
VARIABLE ********* Nitrate as NO3	
MEASUREMENT 38.00000 UNITS Milligrams/Litre	
DEPTH 38.70	
WR ANAL NO 4 METHOD PU PRESERVATIVES	PROJECTS
BOTTLE 4 ANALYST XXX NL	PR
COL AUTH PR	
RECD AT LAB SOURCE GB	
COMMENT	
PIPE A DATE 21/03/2001 REC 1	
VARIABLE ********* Electrical Conductivity @ 25C	
MEASUREMENT 1635.00000 UNITS Microsiemens/cm	
DEPTH 38.70	
WR ANAL NO 5 METHOD PU PRESERVATIVES	PROJECTS
BOTTLE 5 ANALYST XXX NL	PR
COL AUTH PR	
RECD AT LAB SOURCE GB	

Page 12 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51402

		PIPE A DA	TE 21/03/2001	REC 1					
VARIABLE	******	Nitrate as	NO3						
M EA SUREM ENT	40.00000	UN	ITS Milligrams/Li	tre					
DEPTH	38.70								
WR ANAL NO	5	METH	IOD PU			PRESERVATIVES		PROJECTS	
BOTTLE	5	ANALY	ST XXX			NL	F	PR	
		COL AU	ITH PR						
RECD AT LAB		SOUR	CE GB						
COMMENT									
	Y 15/04/199	93 Y 15/04	/1993 Y 15/	04/1993 Y	15/04/1993	Y 15/04/1993	Y 15/04/1993	Y 15/04/1993	Y 15/04/1993
				V	ALIDATION LOG	PART 2			
	WATANL	SAMPLE	STRTI	G W	/IRLOG	MULCND	BRCOND	FPREAD	GNOTES
	Y 15/04/199	93 Y 19/04	/2001 Y 15/	04/1993		Y 15/04/1993			

GENERAL NOTES

DATE 08/05/2018

GROUNDWATER DATABASE

Page 1 of 4

BORE REPORT

REG NUMBER 146584

REGISTRATION DETAILS

			BASIN	1203	LATITUDE 23	-38-40	MAP-SCALE		
OFFICE Longre	each		SUB-AREA		LONGITUDE 14	6-35-13	MAP-SERIES		
DATE LOG RECD 23-NO)V-12		SHIRE	410-BARCALDINE REGIC	EASTING 45	7886	MAP-NO		
D/O FILE NO. 140/00	07/000	3	LOT	108	NORTHING 73	85064	MAP NAME		
R/O FILE NO.			PLAN	BE78	ZONE 55		PROG SECTION		
H/O FILE NO.		OR	IGINAL DESCRIPTION		ACCURACY		PRES EQUIPMENT		
					GPS ACC				
GIS LAT	-23.6	4455905	PARISH NAME	91-ALPHA			ORIGINAL BORE NO	AERODF	ROME BORE
GIS LNG	146	6.587076	COUNTY	BELYANDO			BORE LINE	-	
CHECKED Y									
							POLYGON		
							RN OF BORE REPLACED		
FACILITY TYPE Sub-A		Facility	DATE DRILLED				DATA OWNER	DNR	
STATUS Existing DRILLERS NAME									
ROLES			DRILL COMPANY						
			METHOD OF CONST.	ROTARY MUD					
CASING DETAILS									
	PIP E	DATE	RECORD MATERI NUMBER	AL DESCRIPTION	MAT SIZE (mm)	SIZE DESC	OUTSIDE DIAM (mm)	TOP (m)	BOTTOM (m)
	А	12/11/2012	2 Steel Ca	sing	4.800	WT	168	0.00	108.00
	А	12/11/2012	3 Perforate	ed or Slotted Casing				72.00	96.00
	А	12/11/2012	4 Gravel P	ack	3.500	GR	285	40.00	115.00
	х	12/11/2012	1 Polyvinyl	Chloride	15.500	WT	315	0.00	6.00
	х	12/11/2012	5 Grout				285	6.00	40.00
	х	12/11/2012	6 Grout				375	0.00	6.00
				STRATA LOG	DETAILS				
RECORD NUMBER		STRATA TOP (m)	STRATA STRAT BOT (m)	TA DESCRIPTION					
	1	0.00	1.00 SOIL,	WEATHERED					
:	2	1.00	4.00 CLAY,	WEATHERED					
:	3	4.00	21.00 SILTS	TONE, WEATHERED					

GROUNDWATER DATABA	SE
--------------------	----

Page 2 of 4

BORE REPORT

REG NUMBER 146584

DATE 08/05/2018

RECORD NUMBER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
4	21.00	42.00	CLAY, WEATHERED
5	42.00	64.00	SILTSTONE, WEATHERED
6	64.00	98.00	SAND, WEATHERED
7	98.00	104.00	CLAY, WEATHERED
8	104.00	115.00	CLAYSTONE

STRATIGRAPHY DETAILS

***** NO RECORDS FOUND *****

AQUIFER DETAILS

RE	C TOP BED(M)		ed Dlogy	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR CO (I/s)	NDIT FOR	MATION NAME	
	64.00	98.00 SA	ND			Ν	"POTABLE"	7.60 Y	JC TER	TIARY - UNDEFINED	
					PUMP TEST	DETAILS P	ART 1				
PIPE	DATE	REC RN OF		BOTTOM	DIST METH	TEST TYP			Q PRIOR	DUR PRES ON	Q ON
		NO. PUMP-BORE	(m)	(m)	(m)		TYPE	SE1 (m)	TO TEST (I/s)	OF Q PR ARRIV (min) (m)	ARRIV (I/s)
А	12/11/2012	1 146584	64.00	98.00	PUM		AIR	70.00			

						PUMP TEST	F DETAILS P	ART 2						
PIP	DATE	REC TEST	SWL	RECOV.	RESID.	MAX DD	Q at	TIME TO	Max	CALC	DESIGN	DESIGN	SUCT. TMSY	STOR
E		DUR	(m)	TIME	DD	or P RED	MAX DD	MAX DD	Q	STAT	YIELD	BP	SET (m2/DAY)	
		(mins)		(mins)	(m)	(m)	(l/s)	(mins)	(l/s)	HD (m)	(l/s)	(m)	(m)	
Α	12/11/2012	1 600	-64.00				7.60						70.00	

BORE CONDITION

**** NO RECORDS FOUND ****

ELEVATION DETAILS

**** NO RECORDS FOUND ****

WATER ANALYSIS PART1

of 4 Page 3

BORE REPORT

REG NUMBER 146584

**** NO RECORDS FOUND ****

WATER ANALYSIS PART 2

**** NO RECORDS FOUND ****

**** WATER LEVEL DETAILS NO RECORDS FOUND ****

WIRE LINE LOG DETAILS

**** NO RECORDS FOUND ****

FIELD MEASUREMENTS

**** NO RECORDS FOUND ****

SPECIAL WATER ANALYSIS

Page 5 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 7121

REGISTRATION DETAILS BASIN 0032 LATITUDE 22-58-08 MAP-SCALE 254 **OFFICE Longreach** LONGITUDE 145-14-49 MAP-SERIES M SUB-AREA DATE LOG RECD SHIRE 410-BARCALDINE REGION EASTING 320291 MAP-NO SF55-9 LOT 29 NORTHING 7458853 D/O FILE NO. 25/02/A/01 MAP NAMEMUTTABURRA R/O FILE NO. PLAN A1847 ZONE 55 PROG SECTION H/O FILE NO. L6200B ORIGINAL DESCRIPTION ARAMAC TOWN ACCURACY PRES EQUIPMENT GPS ACC GIS LAT -22.9688763 PARISH NAME 3059-MARATHON ORIGINAL BORE NO ARAMAC TOWN BORE NO 1 GIS LNG 145.2470147 COUNTY RODNEY BORE LINE CHECKED Y PROPERTY NAME POLYGON FIELD LOCATION RN OF BORE REPLACED FACILITY TYPE AF DATE DRILLED 16/05/1933 DATA OWNER STATUS EX CONFIDENTIAL N DRILLERS NAME ROLES DRILL COMPANY METHOD OF CONST. CASING DETAILS PIPE DATE RECORD MATERIAL DESCRIPTION MAT SIZE SIZE DESC OUTSIDE TOP BOTTOM NUM BER (mm) DIAM (m) (m)

A	01/01/1933	1 Steel Casing (unspecified)		0.00	33.80
Α	01/01/1933	2 Steel Casing (unspecified)		0.00	296.90
Α	01/01/1933	3 Open End		296.90	296.90
Α	01/01/1933	4 Open Hole		296.90	365.80
Х	01/01/1933	1 Grout	203	0.00	33.80
х	01/01/1933	2 Grout	152	0.00	296.90

STRATA LOG DETAILS

RECORD NUMBER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
1	0.00	1.83	CLAY DRILLER UNKNOWN
2	1.83	20.12	YELLOW SHALE (SOAK AT 12.2 M - BRACK)
3	20.12	197.21	GREY SHALE (SALT WATER AT 28.7 M)

Page 6

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 7121

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
4	197.21	198.43	SAND (WATER BED)
5	198.43	204.22	CHOCOLATE PUG (WATER BED - FLOW)
6	204.22	217.02	MIXED WHITE SANDY PIPE CLAY
7	217.02	238.36	SHALE-ALL COLOURS AND PUG
8	238.36	281.03	CHOCOLATE SHALE AND PIPE CLAY
9	281.03	297.49	STICKY PUG - TRACE OF SAND
10	297.49	298.10	CHOCOLATE PUG (WATER BED - FLOW)
11	298.10	304.80	SANDSTONE (WATER BED - FLOW)
12	304.80	359.67	MIXED SANDSTONE (WATER BED - FLOW)
13	359.67	365.76	MIXED SANDY PIPE CLAY
14	304.80	359.67	MIXED SANDSTONE ESTIMATED FLOWS 1030-
16			1056 50000 GPD 1070-1120 70000 GPD ME
17			ASURED FLOW AT 1153-1178 622000 GPD
18	359.67	365.76	MIXED SANDY PIPE CLAY
903			00/05/1933 DISCH 2828.0 M3D
910	16.40	28.60	QUALITY DESCRIP/CONDUCT: SALTY

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND ****

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORM ATION NAME
1	16.40	28.60							XX	
2	297.00	366.00	SDST						PS	

PUMP TEST DETAILS PART 1 **** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2

**** NO RECORDS FOUND *****

218

Page 7 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 7121

BORE CONDITION

**** NO RECORDS FOUND ****

ELEVATION DETAILS

**** NO RECORDS FOUND ****

WATER ANALYSIS PART1

PIPE D	ATE	RDANALY	ST	QAN	DEPTH RM (m)	K SRC	COND (uS/cm)	рH	Si (mg/L)	TOTAL IONS		TAL I	HARD	ALK	FIG. OF MERIT	SAR	RAH
A 20/0	3/1987	1 GCL		119174	365.00 PU	GB	445	8.1	19	350.00	26	0.00	15	170	0.1	10.3	3.10
							WATER ANAL	YSIS P	ART 2								
PIPE DATE	RD	Na	к	Ca	Mg	Mn	HC O3	Fe	CO3	CI	F	NO3	\$ 04	Zr	n Al	в	Cu
A 20/03/1987	1	92.0	6.0	6.0	0.0	0.00	205.0	0.04	1.5	36.0	0.50	0.9	0.0				
PIPE D	ATE	MEASUR	e n/r	RMK LO	DG		WATER LEVE DATE N			MK LOG		PIPE	DATE	MEA: (m)	SURE N/R	RMK LOG	
A 03	3/04/197	7 11.18	R			А	26/08/1981	11.85	R								
							WIRE LINE L	OG DE	TAILS								
C	DATE	RU	N	OPERATOR		т	YPE SO	URCE			тор	BOTTO	м сом	MENTS			
1	9/11/20	03 1	I	B ISBISTER		G	R AF	RAMAC	SHIRE COU	JNCI	99	355.4	1				
							FIELD MEAS	SUREME	ENTS								
	PIPE	DATE		DEPTH (m)	COND (uS/cm)		pH TEM (C		NO3 (mg/L)	DO (mg/L)		Eh (mV)	ALK	METH	SOURCE		
	Α	19/03/1987					40	.0						PU	GB		
	Α	19/04/1987					40	.0						PU	GB		
						<u> </u>	SPECIAL WAT	ER AN/	ALYSIS								

**** NO RECORDS FOUND ****

VALIDATION LOG - PART 1

			Page 8	of 20					
DATE	21/12/2011								
REG NUMBER	7121								
	REGDET	CASING	STRLOG Y 03/10/2000	AQUIFR	PUMTES	ELVDET	WLVDET	FIELDQ	
	WATANL	SAMPLE	STRTIG	VALIDATION L WIRLOG	<u>.0G - PART 2</u> Mulcnd	BRCOND	FPREAD	GNOTES	

GENERAL NOTES

Page 9 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51753

REGISTRATION DETAILS

	BASIN 0032	!	LATITUDE 22-	58-02	MAP-SCALE	254	
OFFICE Longreach	SUB-AREA		LONGITUDE 145	-14-23	MAP-SERIES	м	
DATE LOG RECD	SHIRE 410-I	BARCALDINE REGION	EASTING 319	533	MAP-NO	SF55-9	
D/O FILE NO. 25/02/A/01	LOT 31		NORTHING 745	9034	MAP NAME	MUTTAB	URRA
R/O FILE NO.	PLAN RY40	D	ZONE 55		PROG SECTION		
H/O FILE NO. L6200B ORI	GINAL DESCRIPTION 31 R	70	ACCURACY SKE	T	PRES EQUIPMENT		
			GPS ACC				
GIS LAT -22.96716	PARISH NAME 3059	-MARATHON			ORIGINAL BORE NO	ARAMA	C TOWN BORE NO 2
GIS LNG 145.2396478	COUNTY ROD	NEY			BORE LINE	-	
CHECKED Y	PROPERTY NAME						
	FIELD LOCATION				POLYGON		
					RN OF BORE REPLACED		
FACILITY TYPE AF	DATE DRILLED 10/06	6/1983			DATA OWNER		
STATUS EX	DRILLERS NAME				CONFIDENTIAL	N	
ROLES	DRILL COMPANY						
	METHOD OF CONST. CABI	LETOOL					
		CASING DE	TAILS				
PIPE DATE	RECORD MATERIAL DE	SCRIPTION	MAT SIZE (mm)	SIZE DESC	OUT SIDE DIAM	TOP (m)	BOTTOM (m)
A 10/06/1983	1 Steel Casing (u	inspecified)	6.400	WT	219	0.00	60.00
A 10/06/1983	2 Steel Casing (u	inspecified)	6.400	WT	162	0.00	339.00
A 10/06/1983	3 Perforated or S	Blotted Casing	13.000	AP	162	275.00	335.00
A 10/06/1983	4 Open End				162	339.00	
A 10/06/1983	5 Open Hole				188	339.00	362.00
X 10/06/1983	1 Grout				266	0.00	60.00
X 10/06/1983	2 Grout				188	0.00	148.00
		STRATA LOG	DETAILS				
RECORD	STRATA STRATA	STRATA DESCRIPTI					
NUMBER	TOP (m) BOT (m)						
1	0.00 1.00	TOPSOIL DRILLER K	L & B C SHELLEY				
5	1.00 8.00	YELLOW & GREY CL	AY				

Page 10 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
10	8.00	9.00	YELLOW SANDSTONE
15	9.00	20.00	YELLOW & GREY SANDY MUDSTONE
20	20.00	187.00	GREY MUDSTONE * SALTY
25	187.00	188.00	MUDDY SANDSTONE
30	188.00	190.00	SANDSTONE * NO SUPPLY
35	190.00	195.00	SANDY MUDSTONE
40	195.00	196.00	ROCK
45	196.00	199.00	SANDY MUDSTONE
50	199.00	201.50	SANDSTONE*
55	201.50	202.00	ROCK
60	202.00	204.00	GREY MUDSTONE
65	204.00	209.00	SANDSTONE
70	209.00	212.00	SANDY MUDSTONE
75	212.00	227.00	MUDDY SANDSTONE
80	227.00	228.00	ROCK
85	228.00	232.00	SANDY MUDSTONE
90	232.00	233.00	ROCK
95	233.00	234.00	SANDY MUDSTONE
100	234.00	244.00	WHITE SANDSTONE
105	244.00	245.00	ROCK
110	245.00	249.00	GREY MUDSTONE
115	249.00	262.00	WHITE SANDSTONE
120	262.00	265.00	GREY MUDSTONE & ROCK BANDS
125	265.00	289.00	SANDSTONE
130	289.00	293.00	GREY SANDY MUDSTONE
135	293.00	293.50	HARD SANDSTONE
140	293.50	298.00	SANDSTONE
145	298.00	300.00	SANDY MUDSTONE
150	300.00	302.50	MUDDY SANDSTONE
155	302.50	310.00	SANDSTONE
160	310.00	313.00	SANDSTONE & MUDDY SEAMS *

Page 11 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51753

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
165	313.00	322.00	FINE SANDSTONE *
170	322.00	332.00	MEDIUM SANDSTONE *
175	332.00	338.00	SANDSTONE & CLAY SEAMS
180	338.00	360.00	FINE & MEDIUM SANDSTONE *
185	360.00	361.75	FIRM FINE SANDSTONE *
190	361.75	362.00	GREY SANDY MUDSTONE
902			16/06/1983 SWL 17.87 M TMP 037 C
903			16/06/1983 DISCH 2518.0 M3D
910	45.00	46.00	QUALITY DESCRIP/CONDUCT: SALTY
911	188.00	190.00	QUALITY DESCRIP/CONDUCT: POTABLE
912	310.00	332.00	QUALITY DESCRIP/CONDUCT: POTABLE

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND *****

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL FLO (m)	W QUALITY	YIELD CTR CON (I/s)	DIT FORMATION NAME
1	45.00	46.00	MDST				P	3
2	188.00	190.00	SDST				P	3
3	199.00	201.50	SDST				P	3
4	310.00	332.00	SDST				P	3

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2

**** NO RECORDS FOUND ****

BORE CONDITION

Page 12 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51753

ELEVATION DETAILS

**** NO RECORDS FOUND ****

WATER ANALYSIS PART1

PIPE	DA	ATE	RD ANALYS	т	QAN	DEPTH RMI (m)	K SRC	COND (uS/cm)	рH	Si (mg/L)	TOTAL IONS	TOTA SOLID		HARD	ALK	FIG. OF MERIT	SAR	RAH
А	10/06	5/1983	1 GCL		097518	350.00	GB	465	7.9	20	381.90	290.0	8	19	182	0.1	9.9	3.24
А	10/06	6/1983	2 GCL		097519	340.00	GB	470	8.0	23	375.60	289.3	2	22	178	0.1	9.0	3.11
А	10/06	5/1983	3 GCL		097520	345.00	GB	475	8.0	20	373.10	283.8	2	19	178	0.1	9.8	3.18
А	10/06	6/1983	4 GCL		097546	190.00	GB	3250	8.0	7	1854.40	1721.6	2	56	229	0.0	38.2	3.44
А	15/06	6/1983	1 GCL		097786	MA	GR	490	8.2	20	358.40	274.2	0	26	171	0.1	7.7	2.91
А	18/03	3/1987	1 GCL		119215	362.00 PU	GB	455	7.6	19	360.00	270.0	0	16	175	0.1	10.1	3.20
								WATER ANAL	YSIS P	ART 2								
PIPE D	ATE	RD	Na	к	Ca	Mg	Mn	HCO3	Fe	CO3	CI	F	NO3	\$ 04	Zı	n Al	в	Cu
A 10/06	6/1983	1	100.0	5.5	6.8	0.6		220.0		0.8	45.0	0.40	0.0	2.8				
A 10/06	6/1983	2	97.0	5.2	7.2	1.0		215.0		1.0	46.0	0.40	0.0	2.8				
A 10/06	6/1983	3	98.0	5.5	6.6	0.6		215.0		1.2	43.0	0.40	0.0	2.8				
A 10/06	6/1983	4	660.0	6.0	16.0	4.0		275.0		1.8	880.0	0.60	0.0	11.0				
A 15/06	6/1983	1	90.0	5.3	7.6	1.6		205.0		1.8	40.0	0.50	0.6	6.0				
A 18/03	8/1987	1	95.0	5.9	6.3	0.2	0.11	210.0 0	.02	0.5	42.0	0.50	0.0	0.0				
								WATER LEVE	DETA	ILS								
PIP	E D/	ATE	MEASURE	N/R	RMK L	.0G	PIPE	DATE N	IEASU	REN/R R	MK LOG		PIPE	DATE	MEA (m)	SURE N/R	RMK LOG	
А	15	/06/198	3 17.87	R														
								WIRE LINE L	og det	TAILS								
							**	** NO RECOR										
								FIELD MEAS	UREME	ENTS								
		PIPE	DATE		DEPTH (m)	COND (uS/cm)		pH TEMI (C		NO3 (mg/L)	DO (mg/L)		Eh V)	ALK	METH	SOURCE		
		Α	19/03/1987					46.	0						PU	GB		

Page 13 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 51753

SPECIAL WATER ANALYSIS

**** NO RECORDS FOUND ****

VALIDATION LOG - PART 1

REGDET	CASING	STRLOG	AQUIFR	PUMTES	ELVDET	WLVDET	FIELDQ
Y 23/08/1991	Y 23/08/1991	Y 23/08/1991	Y 23/08/1991	Y 23/08/1991	Y 23/08/1991	Y 23/08/1991	Y 23/08/1991
			VALIDATION LO	<u>G - PART 2</u>			
WATANL	SAMPLE	STRTIG	WIRLOG	MULCND	BRCOND	FPREAD	GNOTES
Y 23/08/1991		Y 23/08/1991		Y 23/08/1991			

GENERAL NOTES

Page 17 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 93744

REGISTRATION DETAILS

				BASIN	0033	LATITUDE 23	3-33-24	MAP-SCALE	254		
OFFICE Longre	each		SU	B-AREA		LONGITUDE 14	5-17-36	MAP-SERIES	M		
DATE LOG RECD				SHIRE	410-BARCALDINE REG	ION EASTING 32	25795	MAP-NO	1		
D/O FILE NO. 140/00	07/0003	1		LOT	9	NORTHING 73	93824	MAPNAM	E		
R/O FILE NO.				PLAN	RY 182	ZONE 55	5	PROG SECTION	i		
H/O FILE NO.		OF	RIGINAL DESCI	RIPTION		ACCURACY		PRES EQUIPMENT			
						GPS ACC					
GIS LAT	-23.5	566147	PARIS	HNAME	293-BARCALDINE			ORIGINAL BORE NO	NEW PO	MONA BORE YEV	V ST
GIS LNG	145	.293222	0	COUNTY	RODNEY			BORE LINE			
CHECKED Y			PROPERT	YNAME							
			FIELD LO	CATION				POLYGON	I.		
								RN OF BORE REPLACED	314		
FACILITY TYPE SF			DATE	DRILLED	19/11/2002			DATA OWNER	ł		
STATUS EX					RTYNDALL			CONFIDENTIAL	N		
ROLES			DRILL CO	MPANY	A FRAC DRILLING P/L						
			METHOD OF	CONST.	ROTARY MUD						
					CASIN	G DETAILS					
	PIPE	DATE	RECORD		AL DESCRIPTION		SIZE DESC	OUTSIDE	тор	BOTTOM	
		DATE	NUMBER	mandu.	AL DESCRIPTION	(mm)		DIAM	(m)	(m)	
	A	19/11/2002			sing (unspecified)) WT	406	0.00	21.00	
	A	19/11/2002			sing (unspecified)) WT	324	0.00	140.00	
	A	19/11/2002	3	Steel Cas	sing (unspecified)	7.790) WT	273	0.00	137.80	
	А	19/11/2002	4	Steel Cas	sing (unspecified)	6.400) WT	168	137.80	462.00	
			_	-							

Α	19/11/2002	4 Steel Casing (unspecified)	6.400 WT	168	137.80	462.00
Α	19/11/2002	5 Grout		324	0.00	140.00
Α	19/11/2002	6 Grout		273	0.00	137.80
Α	19/11/2002	7 Grout		168	137.80	328.50
А	19/11/2002	8 Perforated or Slotted Casing			343.00	429.00
А	19/11/2002	9 Perforated or Slotted Casing			435.00	441.00
А	19/11/2002	10 Perforated or Slotted Casing			447.00	453.00

STRATA LOG DETAILS

1 0.00

3.00 SAND & BACKFILL

of 20 Page 18

227

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 93744

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
2	3.00	21.00	WEATHERED SDST, YELLOW & WHITE
3	21.00	180.00	SHALE, GREY, FINE AND HARD
4	180.00	220.00	SANDSTONE, GREY, FINE
5	220.00	343.00	SHALE, GREY, FINE, HARD
6	343.00	460.00	SANDSTONE, LIGHT GREY, FINE
7	460.00	462.00	MUDSTONE, BROWN, FINE, HARD

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND ****

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORMATION NAME
1	178.00		SDST			Ν		N	PS	
2	346.00		SDST	19/11/2002	-3.83	N		Y	PS	HUTTON SANDSTONE

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2

**** NO RECORDS FOUND ****

BORE CONDITION

PRECIPITATE

DRAIN DETAILS DATE MAXC TOT LEN RUN D (km) N L (km) (km) N

28/05/2003

HEADWORKS RETCC LEAK FLOW IRREGULARITY

LEN D T

EST USE STOCK (ML/yr) CATTLE SHEEP COMMENT

> Pumping test by Ayr Boring Co Pty Ltd for George Bourne & Associates

ELEVATION DETAILS

228

GROUNDWATER DATABASE

Page 19 of 20

BORE CARD REPORT - PUBLISHABLE

DATE 21/12/2011

REG NUMBER 93744

WATER ANALYSIS PART1

PIPE	DAT	E	RD ANALYS	Т	QAN	DEPTH RI (m)	MK SRO	COND (uS/cm)		Si (mg/L)	TOTAL IONS		DTAL DLIDS	HARD	ALK	FIG. OF MERIT	SAR	RAH	
А	29/05/2	003	1 GCL		BAR301			37	0 8.2	24	295.26	2	35.39	11	138	0.1	10.6	2.54	
								WATER ANA	LYSIS	PART 2									
PIPE D	ATE	RD	Na	к	Ca	Mg	Mn	HCO3	Fe	CO3	CI	F	NO3	\$ 04	Zn	n Al	В	Cu	
A 29/05	5/2003	1	79.0	3.3	3.7	0.3	0.03	165.0	0.02	1.5	38.0	0.20	< 0.5	3.6	< 0.01	I < 0.05	< 0.02	< 0.03	

WATER LEVEL DETAILS

**** NO RECORDS FOUND ****

WIRE LINE LOG DETAILS

**** NO RECORDS FOUND ****

FIELD MEASUREMENTS

**** NO RECORDS FOUND ****

SPECIAL WATER ANALYSIS

**** NO RECORDS FOUND ****

VALIDATION LOG - PART 1

**** NO RECORDS FOUND ****

VALIDATION LOG - PART 2

**** NO RECORDS FOUND ****

GENERAL NOTES

Page 14 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 69904

REGISTRATION DETAILS

		BASIN	0033	LATITUDE 23-33-32	MAP-SCALE	
OFFICE Longr	each	SUB-AREA		LONGITUDE 145-16-44	MAP-SERIES	
DATE LOG RECD		SHIRE	410-BARCALDINE REGIO	EASTING 324320	MAP-NO	
D/O FILE NO. 140/0	07003	LOT	80	NORTHING 7393555	MAP NAME	
R/O FILE NO. 28-40	2101	PLAN	CP860113	ZONE 55	PROG SECTION	
H/O FILE NO.		ORIGINAL DESCRIPTION	TOWN COMMON -	ACCURACY	PRES EQUIPMENT	
			TOWN OF BARCALDINE	GPS ACC		
GIS LAT	-23.5588822	PARISHNAME	293-BARCALDINE		ORIGINAL BORE NO	ACACIA STREET
GIS LNG	145.2787535	COUNTY	RODNEY		BORE LINE	-
CHECKED Y		PROPERTY NAME				
		FIELD LOCATION			POLYGON	
					RN OF BORE REPLACED	
FACILITY TYPE SF		DATE DRILLED			DATA OWNER	
STATUS EX		DRILLERS NAME			CONFIDENTIAL	N
ROLES		DRILL COMPANY				
		METHOD OF CONST.				
			CASING			
			CASING	DETAILS		

PIPE	DATE	RECORD MATERIAL DESCRIPTION NUMBER	MAT SIZE (mm)	SIZE DESC	OUT SIDE DIAM	TOP (m)	BOTTOM (m)
А	29/08/1996	1 Steel Casing (unspecified)	9.530	WT	324	0.00	140.00
А	29/08/1996	2 Steel Casing (unspecified)	7.900	WT	273	0.00	140.00
А	29/08/1996	3 Steel Casing (unspecified)	6.400	WT	168	140.00	464.45
А	29/08/1996	4 Perforated or Slotted Casing		AP		332.00	464.45

STRATA LOG DETAILS

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
1	0.00	1.00	SAND
2	1.00	12.00	YELLOW CLAY
3	12.00	54.00	GREY CLAY
4	54.00	56.00	HARD BAND
5	56.00	72.00	GREY SHALE & CLAY

229

of 20 Page 15

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 69904

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
6	72.00	73.00	HARD BAND
7	73.00	111.00	GREY SHALE & CLAY
8	111.00	170.00	HARD SHALE
9	170.00	175.00	BROWN SHALE
10	175.00	178.00	QUARTZ & FINE SANDSTONE *
11	178.00	202.00	SHALE & LIMESTONE
12	202.00	223.00	GRITTY SHALE
13	223.00	231.00	SANDSTONE *
14	231.00	298.00	SANDSTONE OR QUARTZ *
15	298.00	309.00	BROWN SANDY CLAY
16	309.00	335.00	FINE SANDSTONE *
17	335.00	462.00	SANDSTONE *
18	462.00	464.45	HARD SANDSTONE
901	309.00		FLOW APPROX 400000 GPD, TEMP 47 DEG C
902			QUALITY POTABLE
903			DRILLER A B HOWSE LIC NO 2742

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND ****

AQUIFER DETAILS

REC	TOP	BOTTOM	BED	DATE	SWL	FLOW	QUALITY	YIELD	CTR	CONDIT	FORMATION NAME
	BED(M)	BED(M)	LITHOLOGY		(m)			(l/s)			
1	223.00	462.00	SDST			Y		20.80	Υ	PS	HUTTON SANDSTONE

PUMP TEST DETAILS PART 1 **** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2 **** NO RECORDS FOUND ****

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 69904

BORE CONDITION

**** NO RECORDS FOUND ****

ELEVATION DETAILS

**** NO RECORDS FOUND ****

WATER ANALYSIS PART1

PIPE D	ATE	RD ANALYS	r qan	I	DEPTH RM (m)	K SRC	COND (uS/cm)	рH	Si (mg/L)	TOTAL IONS		TAL LIDS	HARD	ALK	FIG. OF MERIT	SAR	RAH
A 07/0	08/1997	1 GCL	970	512		GR	860	8.0		707.51	49	94.02	9	344		30.0	6.71
							WATER ANAL	YSIS P	ART 2								
PIPE DATE	RD	Na	к	Са	Мg	Mn	HCO3	Fe	CO3	CI	F	NO3	\$ 04	Zı	n Al	в	Cu
A 07/08/199	71	203.0	1.4	3.3	0.1		420.0 0	.01	0.0	75.0	1.50	0.3	2.9				

WATER LEVEL DETAILS

**** NO RECORDS FOUND ****

WIRE LINE LOG DETAILS

**** NO RECORDS FOUND ****

FIELD MEASUREMENTS

**** NO RECORDS FOUND ****

SPECIAL WATER ANALYSIS

**** NO RECORDS FOUND ****

VALIDATION LOG - PART 1

**** NO RECORDS FOUND ****

VALIDATION LOG - PART 2

**** NO RECORDS FOUND ****

GENERAL NOTES

**** NO RECORDS FOUND ****

Page 16

of 20

Page 27 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 103202

REGISTRATION DETAILS

			BASIN	0033	LATITUDE 23-	36-10	MAP-SCALE	1	
OFFICE Eme	rald		SUB-AREA		LONGITUDE 146	6-07-47	MAP-SERIES		
DATE LOG RECD			SHIRE	410-BARCALDINE REGION	EASTING 411	203	MAP-NO	1	
D/O FILE NO. 50-2	2002		LOT	82	NORTHING 738	9458	MAP NAM	E	
R/O FILE NO.			PLAN	SP108318	ZONE 55		PROG SECTION	Í.	
H/O FILE NO.		OR	IGINAL DESCRIPTION		ACCURACY		PRES EQUIPMENT		
					GPS ACC				
GIS LAT	-23.60	2979246	PARISHNAME	2485-JERICHO			ORIGINAL BORE NO	JERICHO	TOWN BORE NO 1
GIS LNG	146.12	9638589	COUNTY	MEXICO			BORE LINE	-	
CHECKED Y			PROPERTY NAME						
			FIELD LOCATION				POLYGON		
							RN OF BORE REPLACED		
FACILITY TYPE SF			DATE DRILLED	09/05/2000			DATA OWNER	l –	
STATUS EX			DRILLERS NAME				CONFIDENTIAL		
ROLES WS			DRILL COMPANY						
			METHOD OF CONST.	ROTARY					
				CASING D	ETAILS				
	PIPE	DATE	RECORD MATERIA	AL DESCRIPTION	MAT SIZE	SIZE DESC	OUTSIDE	TOP	BOTTOM
			NUMBER		(m m)		DIAM	(m)	(m)
	А	09/05/2000	1 Steel Cas	sing (unspecified)	6.400	WT	501	0.00	6.00
	Α	09/05/2000	2 Steel Cas	sing (unspecified)	9.500	WT	355	0.00	103.00
	Α	09/05/2000	3 Acrylonit	rile Butadiene Styrene	8.500	WT	220	0.00	101.00
	А	09/05/2000	4 Stainless	Steel			168	101.00	103.00
	Α	09/05/2000	5 Screen		0.580	AP	168	104.40	108.40
	Α	09/05/2000	6 Stainless	Steel			168	108.40	116.30
	А	09/05/2000	7 Screen		0.580	AP	168	116.30	119.30
	А	09/05/2000	8 Grout					0.00	103.00
	А	09/05/2000	9 Gravel P	ack				103.00	119.30
				CTDATA LOO					
				STRATA LOG					
		ECORD UMBER		RATA STRATA DESCRIPT T (m)	ION				

Page 28

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 103202

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
19	70.20	74.60	WHITE SHALE AND SILTSTONE
20	74.60	77.10	SHALE WITH OILY BANDS
21	77.10	87.30	DARK GRAY SHALE
22	87.30	87.60	HARD CEMENTED ROCK
23	87.60	89.30	GRAY SHALE
24	89.30	95.60	SILTSTONE
25	95.60	98.00	PINK SHALE WITH SANDSTONE LENS
26	98.00	99.00	PINK SHALE WITH CLAYEY SANDSTONE LENS
27	99.00	102.00	WHITE SHALE & BANDS COARSE SANDSTONE
28	102.00	104.00	DIRTY SANDSTONE
1	0.00	5.50	SANDY CLAY
2	5.50	7.00	CLAY
3	7.00	19.80	SANDY CLAY
4	19.80	20.00	HARD CEMENTED ROCK
5	20.00	22.20	CLAYEY SAND
6	22.20	22.50	HARD CEMENTED ROCK
7	22.50	23.50	SAND
8	23.50	23.80	HARD CEMENTED ROCK
9	23.80	24.40	SANDY CLAY
10	24.40	28.00	FINE SAND WATER
11	28.00	33.80	RED FINE SANDY SILT
12	33.80	34.00	HARD CEMENTED ROCK
13	34.00	40.80	YELLOW AND BROWN CLAY
14	40.80	43.80	PALE STICKY CLAY
15	43.80	54.50	GRAY SHALE
16	54.50	54.80	HARD CEMENTED ROCK
17	54.80	70.00	GRAY SHALE
18	70.00	70.20	HARD CEMENTED ROCK
29	104.00	107.50	FINE TO COARSE CLEAN SANDSTONE
30	107.50	107.70	HARD CEMENTED ROCK
31	107.70	108.40	MUDSTONE

233

Page 29 of 32

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 103202

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
32	108.40	109.20	HARD CEMENTED ROCK
33	109.20	110.00	SILTSTONE
34	110.00	113.70	SHALE
35	113.70	116.00	DIRTY SANDSTONE
36	116.00	117.00	FINE TO COARSE SANDSTONE WATER
37	117.00	118.00	VERY FINE SANDSTONE
38	118.00	119.00	MEDIUM TO COARSE SANDSTONE WATER
39	119.00	119.80	SANDSTONE & SHALE

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND ****

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORMATION NAME
1	104.40	108.40	SDST	09/05/2000	-36.50	Ν	COND 830	Y	PS	TERTIARY - UNDEFINED
2	116.30	119.30	SDST	09/05/2000	-36.50	N	COND 830	16.20 Y	PS	TERTIARY - UNDEFINED

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2

**** NO RECORDS FOUND ****

BORE CONDITION

**** NO RECORDS FOUND ****

ELEVATION DETAILS

**** NO RECORDS FOUND ****

WATER ANALYSIS PART1

A 06/05/2000 1 GCL 201779 PU GB 885 6.8 12 487.07 472.18 87 44 0.3 6.4 0.00

Page 30

235

GROUNDWATER DATABASE

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 103202

PIPE	DAT	E	RD ANALYS	т	QAN	DEPTH (m)	RMK	S RC	CC (u\$/c	DND cm)	pН	Si (mg/L)	TOTAL IONS		TAL		HARD	ALK	Fig. (Mer		SAR	R/	AH
А	06/05/2	000	2 GCL		201779		PU	GB		890	6.7	12	487.96	47	3.02	2	87	44	0	.3	6.6		
А	07/05/2	000	1 GCL		201778		PU	GB		890	6.7	12	487.86	47	2.92	2	86	44	0	.3	6.3		
А	07/05/2	000	2 GCL		201778		PU	GB		888	6.7	12	488.33	47	3.57		87	44	0	.3	6.4	0.	00
Α	08/05/2	000	1 GCL		201780		PU	GB		890	6.7	12	486.42	47	2.50)	88	42	0	.3	6.5		
А	08/05/2	000	3 GCL		201780		PU	GB		888	6.7	12	483.29	46	9.58	}	87	42	0	.3	6.4	0.	00
Α	09/05/2	000	1 S&B		46994/	119.00	PU	GB		900	5.9		481.39	46	1.57		86	32	0	.3	6.6		
Α	09/05/2	000	2 GCL		201777		PU	GB		900	6.7	12	488.34	47	3.40)	88	44	0	.3	6.5		
Α	09/05/2	000	4 GCL		201777		PU	GB		900	6.7	12	485.63	47	1.18	3	88	43	0	.3	6.4	0.	00
								Ī	WATER	ANA	LYSIS F	ART 2											
PIPE DA		RD	Na	Κ	Са	Мg		/In	HCO3		Fe	CO3	CI	F		NO3	\$ 04	Zr		AI	В		Cu
A 06/05/		1		8.1	6.5	17.2		03	53.5		0.00	0.0	226.5	0.20		0.2	37.0	0.41		0.00	0.10		.00
A 06/05/		2		8.1	6.5	17.0		03	53.0		0.02	0.0	225.0	0.20	<	0.5	37.0	0.41		0.05	0.10		.05
A 07/05/	2000	1	135.0	8.1	6.4	17.0	0.	03	53.0	<	0.02	0.0	230.0	0.20	<	0.5	37.0	0.41	<	0.05	0.10	< 0	.05
A 07/05/	2000	2	136.9	8.1	6.4	17.2	0.	03	53.2		0.00	0.0	228.9	0.20		0.3	37.1	0.41	1	0.00	0.10	0	.00
A 08/05/	2000	1	140.0	8.3	6.3	17.5	0.	03	51.0	<	0.02	0.0	225.0	0.20	<	0.5	37.0	0.37	<	0.05	0.10	< 0	.05
A 08/05/	2000	3	137.6	8.3	6.3	17.4	0.	03	51.0		0.00	0.0	225.3	0.20		0.2	37.1	0.37	7	0.00	0.10	0	.00
A 09/05/	2000	1	140.0	7.0	8.0	16.0	0.	03	39.0		0.16		240.0			0.2	31.0						
A 09/05/	2000	2	140.0	8.2	6.3	17.5	0.	03	53.0	<	0.02	0.0	225.0	0.20	<	0.5	37.0	0.39) <	0.05	0.10	< 0	.05
A 09/05/	2000	4	138.3	8.2	6.3	17.6	0.	03	52.6		0.00	0.0	225.3	0.21		0.0	37.1	0.39	9	0.00	0.10	0	.00

**** NO RECORDS FOUND ****

WIRE LINE LOG DETAILS

FIELD MEASUREMENTS												
PIPE	DATE	DEPTH (m)	COND (uS/cm)	рH	TEMP (C)	NO3 (mg/L)	DO (mg/L)	Eh (mV)	ALK	METH	SOURCE	
А	07/05/2000	119.00	925							PU	GB	

of 32

236

DATE 17/01/2012

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 103202

PIPE	DATE	DEPTH (m)	COND (uS/cm)	pH TEMP (C)	NO3 (mg/L)	DO (mg/L)	Eh (mV)	ALK	METH	SOURCE
А	08/05/200	0 119.00	916						PU	GB
Α	09/05/200	0 119.00	918						PU	GB
				SPECIAL WATER						
				VALIDATION LC	G - PART 1					
REGDET		CASING	STRLOG	AQUIFR	PUMTES	ELVDET		WLVDET		FIELDQ
Y 22/0	6/2000	Y 22/06/2000	Y 22/06/2000	Y 22/06/2000	Y 30/05/200	0				
				VALIDATION LO	<u>G - PART 2</u>					
WATAN	L	SAMPLE	STRTIG	WIRLOG	MULCND	BRCOND		FPREAD		GNOTES
Y 23/0	6/2000									

GENERAL NOTES

**** NO RECORDS FOUND *****

Page 31

Page 1 of 5

BORE REPORT

REG NUMBER 103203

DATE 08/05/2018

REGISTRATION DETAILS

			BASIN	0033	LATITUDE	23-30	6-09	MAP-SCALE		
OFFICE Emera	ld		SUB-AREA		LONGITUDE	146-(07-45	MAP-SERIES		
DATE LOG RECD			SHIRE	410-BARCALDINE REGIC	EASTING	4111	154	MAP-NO		
D/O FILE NO. 50-200)2		LOT		NORTHING	7389	9511	MAP NAME		
R/O FILE NO.			PLAN	SP136855	ZONE	55		PROG SECTION		
H/O FILE NO.		OR	IGINAL DESCRIPTION	ROAD RESERVE ADJ TO WATER TREATMENT TOWN	ACCURACY GPS ACC			PRES EQUIPMENT		
GIS LAT	-	23.6025	PARISH NAME	6000-NO LONGER USED				ORIGINAL BORE NO	JERICH	O STANDBY BORE
GIS LNG CHECKED Y	146.12	2916667	COUNTY					BORE LINE	-	
								POLYGON		
							I	RN OF BORE REPLACED		
FACILITY TYPE Sub-Ar	tesian	Facility	DATE DRILLED					DATA OWNER		
STATUS Existing	g		DRILLERS NAME							
ROLES WS			DRILL COMPANY							
			METHOD OF CONST.	ROTARY						
				CASING DE	TAILS					
	PIP E	DATE	RECORD MATERIA	AL DESCRIPTION		IZE 1m)	SIZE DESC	OUTSIDE DIAM (mm)	TOP (m)	BOTTOM (m)
	Α	11/06/2000	1 Steel Ca	sing	6.4	400	WT	501	0.00	6.00
	Α	11/06/2000	2 Steel Ca	sing	9.9	500	WT	355	0.00	102.50
	Α	11/06/2000	3 Acrylonit	rile Butadiene Styrene	8.	500	WT	220	0.00	101.10
	Α	11/06/2000	4 Stainless	Steel				168	101.10	104.40
	Α	11/06/2000	5 Screen		0.9	580	AP	168	104.40	107.40
	Α	11/06/2000	6 Stainless	Steel				168	107.40	119.40
	Α	11/06/2000	7 Screen		0.9	580	AP	168	119.40	123.40
	Α	11/06/2000	8 Grout					220	0.00	101.00
				STRATA LOGI	DETAILS					
RECORD NUMBER		STRATA TOP (m)	STRATA STRAT BOT (m)	TA DESCRIPTION						
1	1	0.00	1.50 LOAM	Y CLAY						

DATE 08/05/2018

GROUNDWATER DATABASE

Page 2 of 5

BORE REPORT

REG NUMBER 103203

RECORD NUMBER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
2	1.50	7.00	CLAY SILTY IN PLACES
3	7.00	13.70	WHITE CLAY
4	13.70	14.00	HARD ROCK
5	14.00	18.60	SANDY CLAY
6	18.60	24.40	BROWN CLAY
7	24.40	24.90	HARD ROCK
8	24.90	29.00	SANDY CLAY
9	29.00	32.00	CLAY
10	32.00	32.30	HARD ROCK
11	32.30	36.00	SANDY CLAY
12	36.00	36.30	HARD ROCK
13	36.30	37.80	SANDY CLAY
14	37.80	38.10	VERY HARD ROCK
15	38.10	43.00	MUDSTONE
16	43.00	43.30	HARD ROCK
17	43.30	45.00	MUDSTONE
18	45.00	53.30	SHALE
19	53.30	55.50	SANDSTONE
20	55.50	65.30	SHALE
21	65.30	67.00	CARBONACEOUS SHALE
22	67.00	78.00	SANDSTONE WITH MUDSTONE LENS
23	78.00	80.70	CARBONACEOUS SHALE
24	80.70	86.80	SANDSTONE AND COAL
25	86.80	93.90	SHALE & SILTSTONE LENS
26	93.90	94.90	HARD SANDSTONE
27	94.90	97.00	SOFT WHITE SILTSTONE
28	97.00	102.00	SANDSTONE WITH SILTSTONE LENS
29	102.00	104.00	DIRTY FINE TO COARSE SANDSTONE
30	104.00	104.20	SILTSTONE
31	104.20	106.20	MEDIUM TO COARSE SANDSTONE WATER
32	106.20	107.00	SOFT MUDSTONE

238

Page 3 of 5

BORE REPORT

REG NUMBER 103203

DATE 08/05/2018

RECORD NUMBER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
33	107.00	109.00	DIRTY SANDSTONE
34	109.00	110.50	SHALE & MUDSTONE
35	110.50	112.00	FINE TO COARSE SANDSTONE WATER
36	112.00	114.00	DIRTY SANDSTONE
37	114.00	123.00	FINE TO COARSE SANDSTONE WATER
38	123.00	124.00	SANDSTONE WITH MUDSTONE LENS

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND ****

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD CTR (I/s)	CONDIT	FORMATION NAME
1	104.00	106.00	SDST	11/06/2000	-36.64	Ν		Y	PS	
2	110.00	123.00	SDST	11/06/2000	-36.60	Ν		23.00 Y	PS	

PUMP TEST DETAILS PART 1

**** NO RECORDS FOUND ****

PUMP TEST DETAILS PART 2

**** NO RECORDS FOUND ****

BORE CONDITION

**** NO RECORDS FOUND ****

ELEVATION DETAILS

**** NO RECORDS FOUND ****

WATER ANALYSIS PART1

PIP	DATE	RD ANALYST	QAN	DEPT RMK SRC	COND	pН	Si	TOTAL	TOTAL	HARD	ALK FIG. OF	SAR	RAH
E				Н	(uS/cm)		(mg/L)	IONS	SOLIDS		MERIT		
				(m)				(mg/L)	(mg/L)				

240

DATE 08/05/2018

GROUNDWATER DATABASE

Page 4 of 5

BORE REPORT

REG NUMBER 103203

PIF		ΓE	RD ANALYS	т	QAN	DEPT H (m)	RMK	SRC	CC (u S /	OND cm)	рН	Si (mg/L)	TOTAL IONS (mg/L)	SOL	TAL LIDS ig/L)	HARD	ALK	FIG. OF MERIT	SAR	RAH	
Α	07/06/	2000	1 GCL		201781		PU	GB		960	6.6	12	542.57	51	4.92	116	64	0.4	5.9		
Α	08/06/	2000	1 GCL		201781		PU	GB		960	6.7	12	535.52	50	8.24	115	64	0.4	5.8	0.00	
Α	08/06/	2000	2 GCL		201782		PU	GB		910	6.8	12	503.98	48	2.02	95	55	0.3	6.2	0.00	
Α	09/06/	2000	1 GCL		201784		PU	GB		900	6.6		497.04	46	9.08	92	46	0.3	6.4		
Α	09/06/	2000	3 GCL		201783		PU	GB		895	6.7	12	493.19	47	5.63	90	48	0.3	6.3	0.00	
Α	09/06/	2000	4 GCL		201784		PU	GB		896	6.6	12	492.23	47	6.33	92	45	0.3	6.3	0.00	
Α	10/06/	2000	1 GCL		201783		PU	GB		900	6.7	12	495.16	47	7.68	91	48	0.3	6.4		
									WATER	anai	LYSIS P	ART 2									
PIPE D	DATE	RD	Na	κ	Ca	Mg	1	Mn	HCO3		Fe	CO3	CI	F	NO3	S 04	Zi	n Al	В	Cu	
A 07/0	6/2000	1	145.0	8.4	17.5	17.5	0.	.15	78.0	<	0.02	0.0	235.0	0.30	0.5	36.0	4.0	0 < 0.05	0.10	< 0.05	
A 08/0	6/2000	1	142.5	8.4	17.3	17.4	0.	.15	78.1		0.00	0.0	235.3	0.26	0.5	35.8	4.0	0.00	0.10	0.00	
A 08/0	6/2000	2	139.9	8.2	9.8	17.2	0.	.12	67.2		0.00	0.0	224.7	0.24	0.0	36.8	1.8	7 0.00	0.10	0.00	
A 09/0	6/2000	1	140.0	8.1	7.8	17.5	< 0.	.02	55.0	<	0.02	0.0	230.0	0.20	0.5	37.0	0.7	0 < 0.05	0.10	< 0.05	
A 09/0	6/2000	3	137.7	8.3	7.5	17.3	0.	.04	58.2		0.00	0.0	227.0	0.21	0.2	36.8	0.8	5 0.00	0.10	0.00	
A 09/0	6/2000	4	137.9	8.1	7.8	17.7	0.	.00	54.9		0.00	0.0	228.3	0.21	0.5	36.8	0.6	5 0.00	0.10	0.00	
A 10/0	6/2000	1	140.0	8.3	7.5	17.5	0.	.04	58.0	<	0.02	0.0	225.0	0.20	< 0.5	37.0	0.9	0 < 0.05	0.10	< 0.05	

**** WATER LEVEL DETAILS NO RECORDS FOUND ****

WIRE LINE LOG DETAILS

**** NO RECORDS FOUND ****

FIELD MEASUREMENTS

**** NO RECORDS FOUND ****

SPECIAL WATER ANALYSIS

Page 1 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 308

				REGISTRATIO	NDETAILS				
			BASIN	0032	LATITUDE 2	2-35-43	MAP-SCALE	254	
OFFICE Longr	each		SUB-AREA		LONGITUDE 1	44-32-30	MAP-SERIES	м	
DATE LOG RECD			SHIRE	410-BARCALDINE REGION	EASTING 2	47266	MAP-NO	SF55-9	
D/O FILE NO. 25/02/	/M/01		LOT	55	NORTHING 7	499198	MAP NAM	EMUTTAB	JRRA
R/O FILE NO. 25/2/N	<i>N</i> /1		PLAN	CM174	ZONE 5	5	PROG SECTION	1	
H/O FILE NO. 06609	9		ORIGINAL DESCRIPTION	TOWN RESERVE	ACCURACY S	KET	PRES EQUIPMENT	HW	
				MUTTABURRA	GPS ACC				
GIS LAT	-22.	5952761	PARISHNAME	3469-MUTTABURRA			ORIGINAL BORE NO	MUTTAB	URRA TOWN BORE
GIS LNG	144.	5416657	COUNTY	CUMBERLAND			BORE LINE	-	
CHECKED Y			PROPERTY NAME						
			FIELD LOCATION				POLYGON	I	
							RN OF BORE REPLACED)	
FACILITY TYPE AF			DATE DRILLED				DATA OWNER	2	
STATUS EX				BROWN, ROBERT			CONFIDENTIAL	_ N	
ROLES			DRILL COMPANY						
			METHOD OF CONST.	CABLE TOOL					
				CASING DI	ETAILS				
	PIPE	E DAT	E RECORD MATERI NUMBER	AL DESCRIPTION	MATSIZ (mm	E SIZE DESC	OUTSIDE DIAM	TOP (m)	BOTTOM (m)
	А	01/01/19	01 1 Steel Ca	sing (unspecified)		WT	152	143.70	518.20
	Α	01/01/19	01 2 Steel Ca	sing (unspecified)		WT	127	518.20	825.10
	А	01/08/19	51 1 Steel Ca	sing (unspecified)			254	0.00	31.20
	А	01/08/19	51 2 Steel Ca	sing (unspecified)			127	0.00	183.90
	А	01/08/19	51 3 Grout				254		
	А	01/08/19	51 4 Grout				127		

STRATA LOG DETAILS

RECORD NUM BER	STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIP	TION
1	0.00	825.10	NO STRATA INFO	
902			00/00/1901 SWL "	M TMP 059 C
903			00/00/1901 DISCH	4504.5 M3D

Page 2 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

		ORD MBER 910		STRATA TOP (m) 823.00			T (m)	STRATA DESCR		T: 570				
								STRATIGRA	PHY DETA	ILS				
	S	DURCE		RECORD NUM BER		STR TOP		STRATA BOT (m)	STR	ATA DESCRIP	TION			
	DN	IR		1					WAL	Lumbilla for	RMATION			
	DN	IR		2					HUT	FON SANDSTO	NE			
	DN	IR		3					CLE	ATIS GROUP				
								AQUIFE	RDETAILS					
		BOTTOM BED(M)		BED LITHOLOG	Y	D	ATE	SWL (m)	FLOW	QUALITY		YIELD CTR (I/s)	CONDI	FORMATION NAME
1 53	30.00			SDST									PS	WALLUMBILLA FORMATION
2 75	56.00			SDST									PS	HUTTON SANDSTONE
3 82	23.00			SDST									PS	CLEMATIS
								PUMP TEST DI						
								PUMP TEST	RDS FOUN					
								BORE C	ONDITION					
DATE		AINDETA DT MA		RET		ADWO		5.000			EST USE	STOCK	,	
DATE		EN RU		LEN		т	LEAK	FLOW	PRE	CIPITATE	(ML/yr)			COMMENT
	(k)	m) (km	1) N	(km)	Ν	L								
20/12/19														
15/12/197	72 '	1.6			F	F	С							Small leak from centre of concrete around bore, 2" x 4m outlet to drain.
25/05/197	75 (0.6			G	Р								around sore. 2 X 4m outer to train.

Page 3 of 20

DATE 21/12/2011

BORE CARD REPORT - PUBLISHABLE

REG NUMBER 308

ELEVATION DETAILS

PIPE DATE ELEVATION PRECISION DATUM MEASUREMENT POINT SURVEY SOURCE STD

X 01/JAN/01 236.30 SVY

Ν WATER ANALYSIS PART1

PIPE	DATE	RD ANALYST	QAN	DEPTH RMM (m)	(SRC	COND (uS/cm)	рH	Si (mg/L)	TOTAL IONS	TOTAL SOLIDS	HARD	ALK	FIG. OF MERIT	SAR	RAH
А	15/12/1972	1 GCL	55264	PU	GB	520	8.3		433.50	309.47	26	223	0.1	10.3	3.95
Α	13/06/1975	1 GCL	65316	PU	GB	570	7.7		413.40	283.78	7	209		18.1	4.03
Α	27/09/1988	1 GCL	127068		GB	420	8.4	27	362.12	277.29	6	187		16.5	3.62
Α	08/08/1990	1 GCL	134969		GB	449	8.1	29	374.33	289.80	7	185	0.0	15.9	3.56
Α	08/08/1991	1 GCL	134969	825.00	GB	450	8.1	29	374.97	292.14	7	183		16.0	3.52

WATER ANALYSIS PART 2

PIPE DATE	RD	Na	к	Ca	Mg	Mn	HCO3	Fe	CO3	CI	F	NO3	S 04	Zn	AI	в	Cu
A 15/12/1972	1	120.0		7.0	2.0		244.0		14.0	46.0	0.50		0.0				
A 13/06/1975	1	112.0	7.8	2.4	0.3		255.0			35.0	0.50	0.0	0.4				
A 27/09/1988	1	92.0	8.0	2.2	0.1	0.06	220.0	0.06	3.9	33.0	0.30	0.5	2.0				
A 08/08/1990	1	96.5	15.6	2.3	0.3	0.06	222.4	0.00	1.6	35.4	0.24	0.0	0.0				
A 08/08/1991	1	97.0	15.5	2.3	0.3	0.06	220.0	0.01	1.6	35.5	0.20	0.5	2.0				

WATER LEVEL DETAILS **** NO RECORDS FOUND ****

WIRE LINE LOG DETAILS

I	DATE	RUN	OPERATOR	TYPE	SOURCE	ТОР	BOTTOM	COMMENTS
1	23/07/2007	1		CAL	DNR	0		5" CASING TO 182M, 182M-507M 6" CASING?, 507-517M OLD 5" CASING, 517-549M POSSIBLY OPEN HOLE.
1	23/07/2007	1	B ISBISTER	CALU	MUTTABURRA S C	-1.81	549.24	
2	23/07/2007	1		CCL	DNR	0	514	RUST 11-12, 31-55, 79-84, 184; SURFACE RUST 90-115, 120-126, 150- 162;266-285; POSSIBLE PIN HOLE 292M; 506-508M CORRODED.

GROUNDWATER DATABASE											Page 4	of 20			
DATE 21	1/12/2011				В	ORECA	RD REPO	RT - PUBLI	SHABLE						
REG NUMBER 308															
	DATE		RUN	OPERATO	R	TYPE	SOURC	E		тор	BOTTO	м со	MMENTS		
	23/07/20	007	1	B ISBISTER	1	GR	MUTTA	BURRA S C		-1.7	514.	25			
	23/07/2007 2				GR	DNR		(5			TER CASING TO 32N MA AT 143M. NO RE O 514M.		
						FIEL	DMEASURE	MENTS							
	PIPE	DAT	E	DEPTH (m)	COND (uS/cm)	pН	TEMP (C)	NO3 (mg/L)	DO (mg/L)		Eh (mV)	ALK	METH	SOURCE	
	A 30/03/1965		965				50.0						PU	GB	
	А	15/12/1					59.0								
	A	25/05/1					60.0						PU	GB	
	A	26/09/1					60.0						PU	GB	
	A	27/09/1			420								PU	GB	
	A	08/08/1	990		450								PU	GB	
						SPECI/	L WATER	ANALYSIS							
						**** N O	RECORDS	FOUND ****							
								VALIDATION LOG - PART 1							
	REGDET	Г	CAS	ING	STRLOG	AQUIF	R	PUMTES	ELVI	DET	w	LVDET		FIELDQ	
	Y 31/01/1991		Y 3	1/01/1991	Y 20/11/2000	Y 31/	01/1991	Y 31/01/19	91		Y 31/0		1991	Y 31/01/1991	
						VALID	ATION LOG	- PART 2							
	WATAN	IL	SAM	IPLE	STRTIG	WIRLO	G	MULCND	BRC	OND	FF	READ		GNOTES	
	Y 31/0	1/1991													
							GENERAL I	NOTES							
	PIPE	DAT	E	REC N	OTES										
	А	30/04	4/1901	1 (Driginal Drilled: Casi	ing 20m x 2	00mm, 518.	2m x 152mm, §	518.2-825.1r	m x 127	mm.				
	A	11/08	3/1951		Bore reconditioned 83.9m of 127mm, o							n, withd	rew existi	ng 8", 6" and 4". Inse	erted

244

GROUN

GROUNDWATER DATABASE

REGISTRATION DETAILS

Page 1 of 4

BORE REPORT

REG NUMBER 146624

DATE 08/05/2018

		REGISTRATIO	IN DETAILS								
	BASIN	0032	LATITUDE 22-	35-42	MAP-SCALE	254					
OFFICE Longreach	SUB-AREA		LONGITUDE 144-32-31		MAP-SERIES	м					
DATE LOG RECD 05-FEB-13	SHIRE	410-BARCALDINE REGIC	EASTING 247	283	MAP-NO	SF55-9					
D/O FILE NO. 140/002/0004	LOT	55	NORTHING 749	9219	MAP NAME MUTTABURRA						
R/O FILE NO. 25/2/M/1	PLAN	CM174	ZONE 55		PROG SECTION						
H/O FILE NO.	ORIGINAL DESCRIPTION		ACCURACY		PRES EQUIPMENT						
			GPS ACC								
GIS LAT -22.59508776	PARISH NAME	3469-MUTTABURRA			ORIGINAL BORE NO	MUTTAE	BURRA TOWN BORE				
GIS LNG 144.5418328	COUNTY	CUMBERLAND			BORE LINE	-					
CHECKED Y											
					POLYGON						
					RN OF BORE REPLACED						
FACILITY TYPE Artesian - Controlled F					DATA OWNER	DNR					
STATUS Existing		TAYLER, STEPHEN CHAR	LES								
ROLES	DRILL COMPANY										
	METHOD OF CONST.	ROTARY MUD									
CASING DETAILS											
PIP DA	TE RECORD MATER	IAL DESCRIPTION	MAT SIZE	SIZE DESC	OUTSIDE	TOP	BOTTOM				
E	NUMBER		(mm)		DIAM (mm)	(m)	(m)				
A 20/01/2	013 2 Steel Ca	asing	6.350	WT	168	0.00	744.50				
A 20/01/2	013 3 Steel Ca	asing	4.800	WT	141	738.00	834.00				
A 20/01/2	013 5 Perforat	ed or Slotted Casing				756.00	834.00				
X 20/01/2	013 1 Steel Ca	asing	6.350	WT	219	0.00	60.00				
X 20/01/2	013 4 Centralis	ser				0.00	60.00				
X 20/01/2	013 6 Grout				279	0.00	60.00				
X 20/01/2	013 7 Grout				200	0.00	744.50				
STRATA LOG DETAILS											
RECORD STRA		TA DESCRIPTION	JETHICS								
NUMBER TOP (TA DESCRIPTION									
1 0	00 1.00 TOPS	OIL									
2 1	00 5.00 CLAY	, SANDY, YELLOW									

DATE 08/05/2018

GROUNDWATER DATABASE

Page 2 of 4

BORE REPORT

REG NUMBER 146624

STRATA TOP (m)	STRATA BOT (m)	STRATA DESCRIPTION
5.00	18.00	CLAY, YELLOW
18.00	30.50	CLAY, GREY
30.50	549.00	SHALE
549.00	579.00	SANDSTONE; SHALE
579.00	597.00	SILTSTONE
597.00	639.00	SILTSTONE; SHALE
639.00	705.00	SHALE
705.00	735.00	SILTSTONE
735.00	741.00	SANDSTONE
741.00	756.00	SHALE
756.00	834.00	SANDSTONE
	TOP (m) 5.00 18.00 549.00 579.00 597.00 639.00 705.00 735.00 741.00	TOP (m) BOT (m) 5.00 18.00 18.00 30.50 30.50 549.00 549.00 579.00 597.00 639.00 639.00 705.00 705.00 735.00 741.00 756.00

STRATIGRAPHY DETAILS

**** NO RECORDS FOUND ****

AQUIFER DETAILS

REC	TOP BED(M)	BOTTOM BED(M)	BED LITHOLOGY	DATE	SWL (m)	FLOW	QUALITY	YIELD ((I/s)	CTR	CONDIT	FORMATION NAME
1	756.00		SDST	20/01/2013	23.24	Y	"POTABLE"	33.00	Y	PS	HUTTON SANDSTONE

					PUMP TEST	DETAILS PART	1					
PIPE	DATE	REC RN OF NO. PUMP-BORE	TOP (m)	BOTTOM (m)	DIST METH (m)	TEST TYPES	PUMP TYPE	SUCTION SET (m)	-	DUR OF Q PR (min)	PRES ON ARRIV (m)	QON ARRIV (I/s)
Α	20/01/2013	1 146624	756.00	834.00	ART				. ,	. ,		. ,
Α	04/09/2013	1 146624			1.75 ART	AC ST FR ST					27.39	
						DT						

					PUMP TEST DET	TAILS PART	2				
A	20/01/2013	1	23.24			33.00			30.00	24.75	300
Α	04/09/2013	1 380	29.34	120	27.07	29.25	120	32.52			

GROUNDWATER DATABASE

Page 3 of 4

BORE REPORT

REG NUMBER 146624

DATE 08/05/2018

BORE CONDITION

	DRAIN	DETAILS		HE/	ADW	ORKS						
DATE	тот	MAX C				LEAK	FLOW		EST USE	STO		
	LEN	RUN D	LEN	D	Т		IRREGULARITY	PRECIPITATE	(ML/yr)	CATTLE	SHEEP	COMMENT
	(km)	(km) N	(km)	Ν	L							
04/09/2013				G	F							

ELEVATION DETAILS

PI	PE	DATE	ELEVATION	PRECISION	DATUM	MEASUREMENT POINT	SURVEY SOURCE
Х	20)/01/2013	216.00	EST	AHD	Ν	GOOGLE EARTH
Х	04	4/09/2013	222.00	GPS	ASD	N	

WATER ANALYSIS PART1

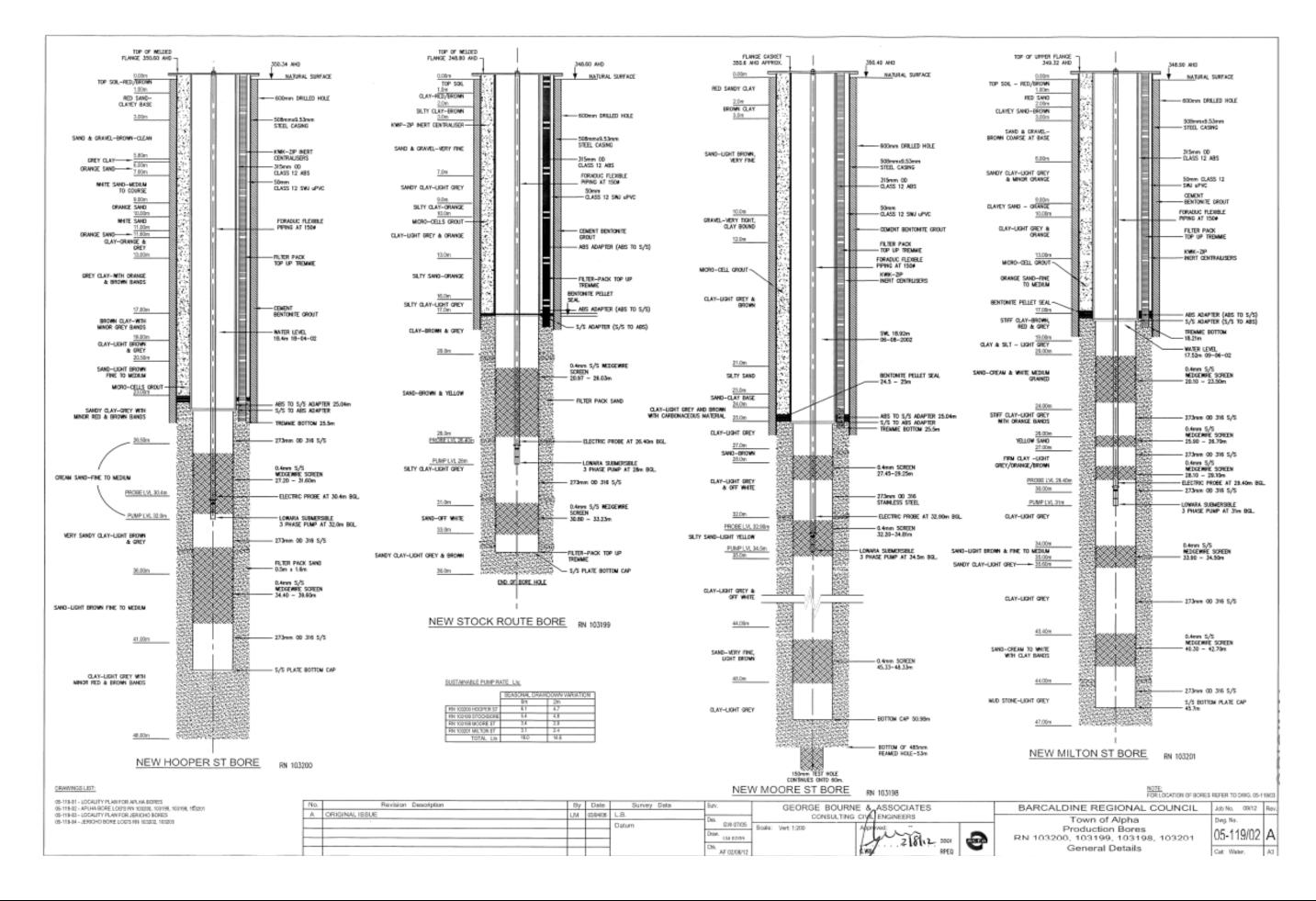
PIP E	DAT	E	RD ANALYS	Г	QAN	DEPT H (m)	RMK	SRC	COND (uS/cm)	pН	Si (mg/L)	TOTAL IONS (mg/L)	S 0	DTAL LIDS ng/L)	HARD	ALK I	FIG. OF MERIT	SAR	RAH
А	14/09/2	013	1 GCL		314427		PU	GB	448	8.0	29	343.00	26	65.00	6	173	0.0	15.0	3.30
									WATER ANAL	(SIS P	ART 2								
PIPE DA A 14/09/		RD 1	Na 90.0	К 8.9	Ca 2.2	Mg 0.2		/n 08		Fe 21	CO3 1.2	CI 32.0	F 0.17	NO3 < 0.5	SO4 < 1.0	Zn 0.01	AI < 0.05	B 0.08	Cu < 0.03

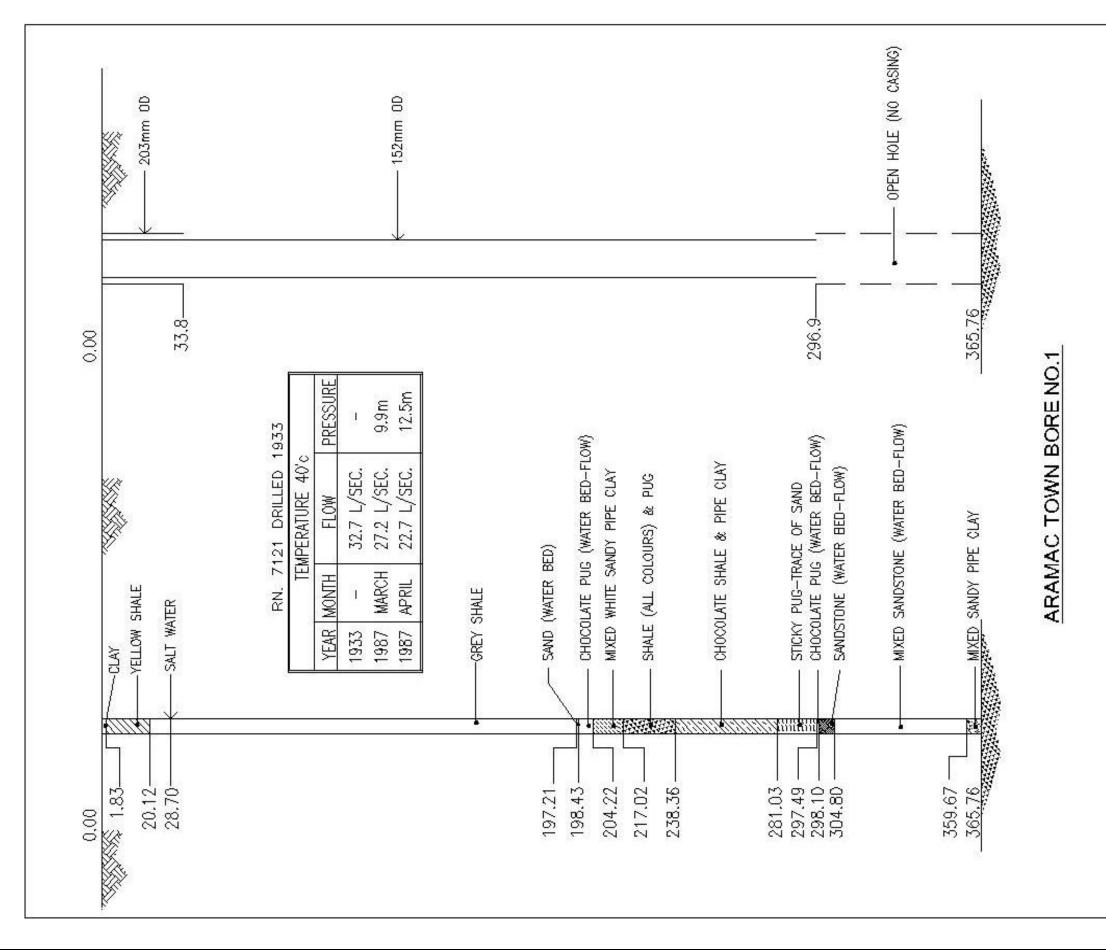
WATER LEVEL DETAILS

WIRE LINE LOG DETAILS

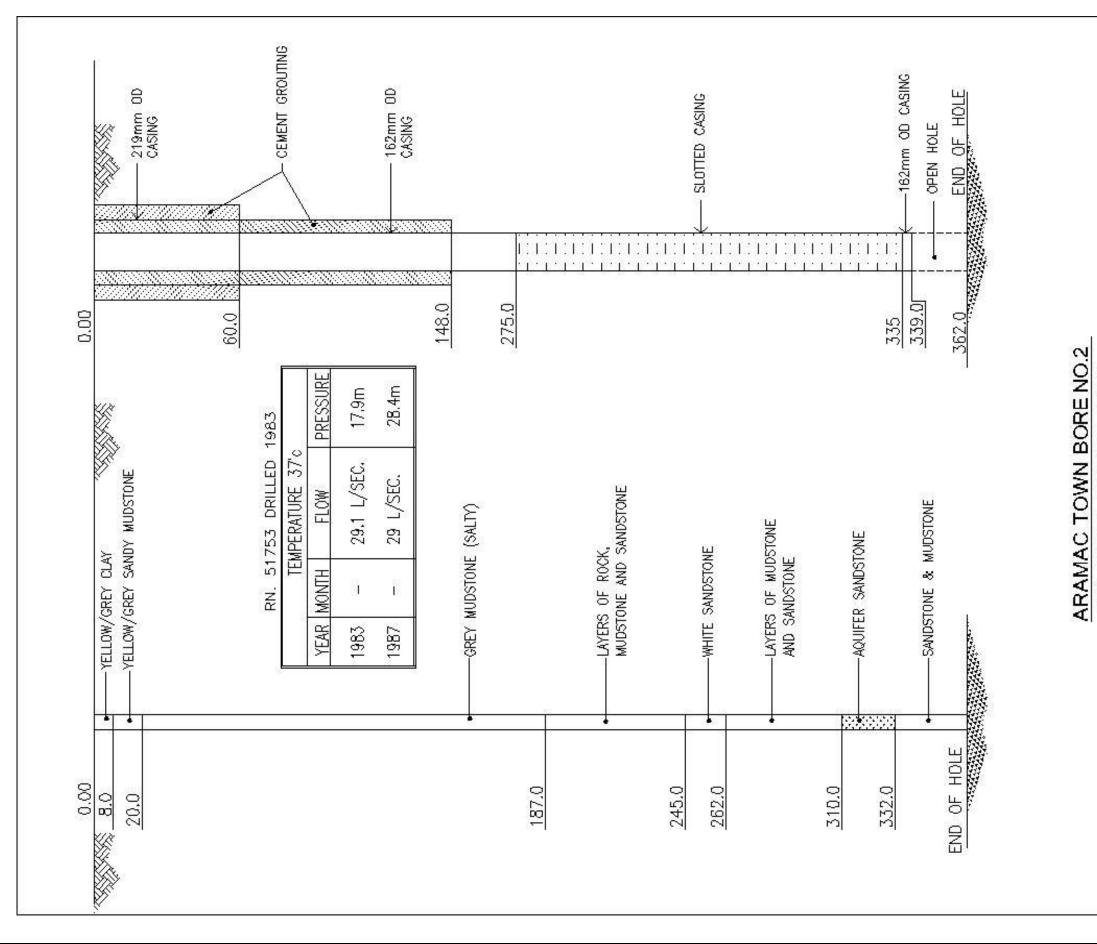
**** NO RECORDS FOUND ****

FIELD MEASUREMENTS

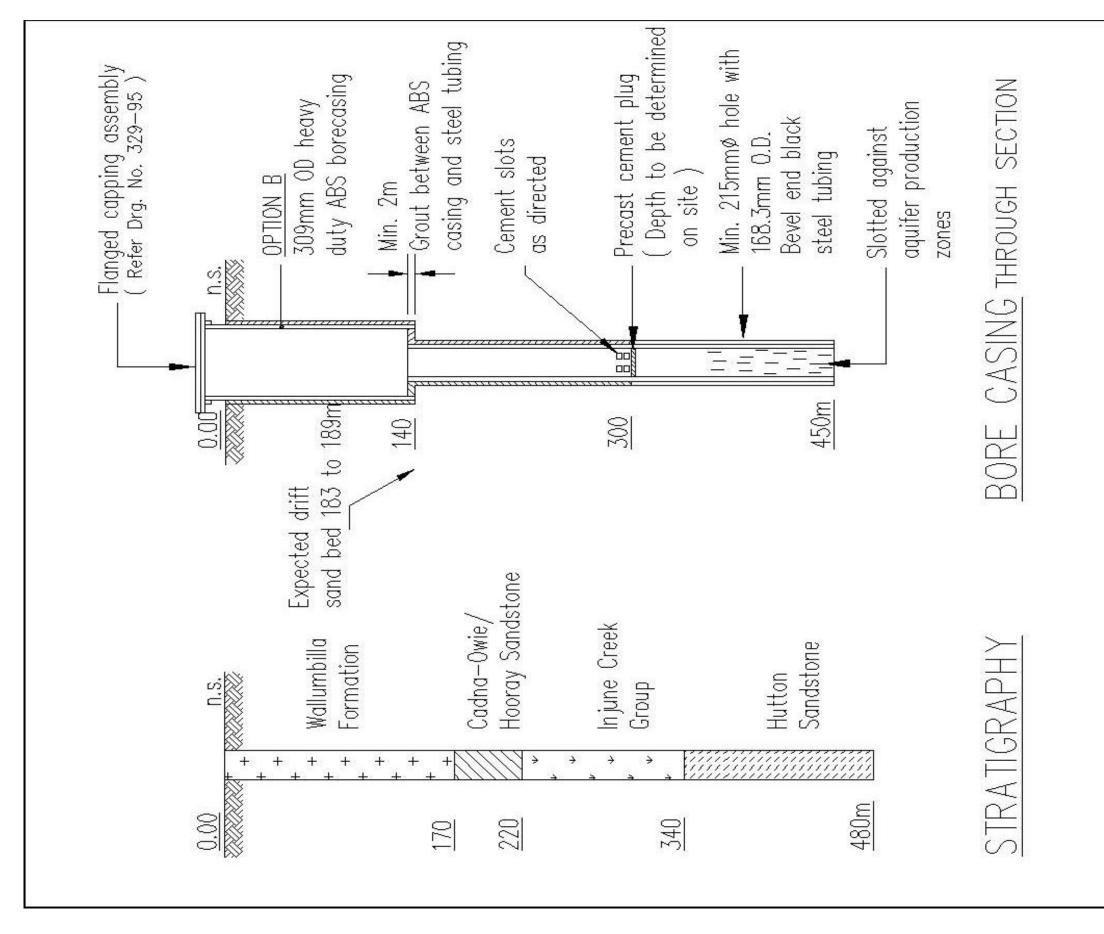

PIPE	DATE	DEPTH (m)	COND (uS/cm)	рН	TEMP (C)	NO3 (mg/L)	DO (mg/L)	Eh (mV)	ALK (mEq)	METH	SOURCE	
Α	04/09/2013		440	7.0	61.0					PU	GB	


SPECIAL WATER ANALYSIS

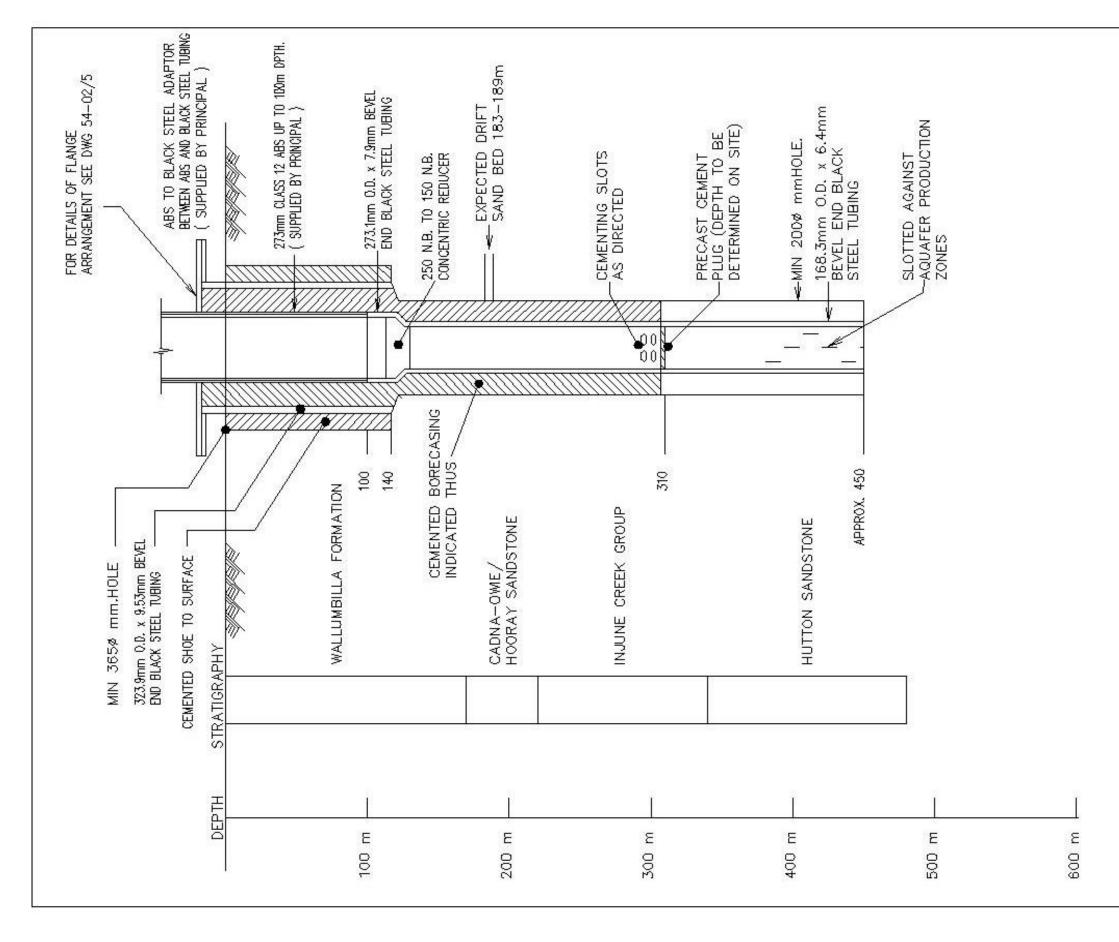
**** NO RECORDS FOUND ****

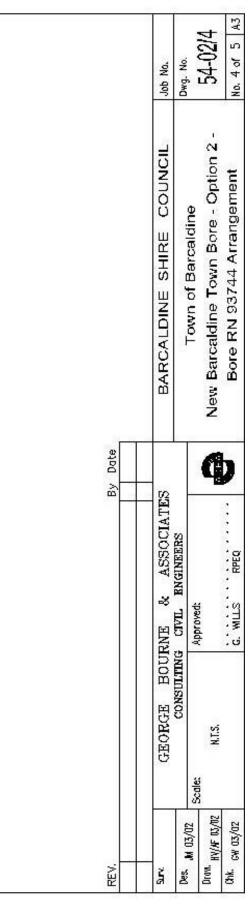

Appendix D

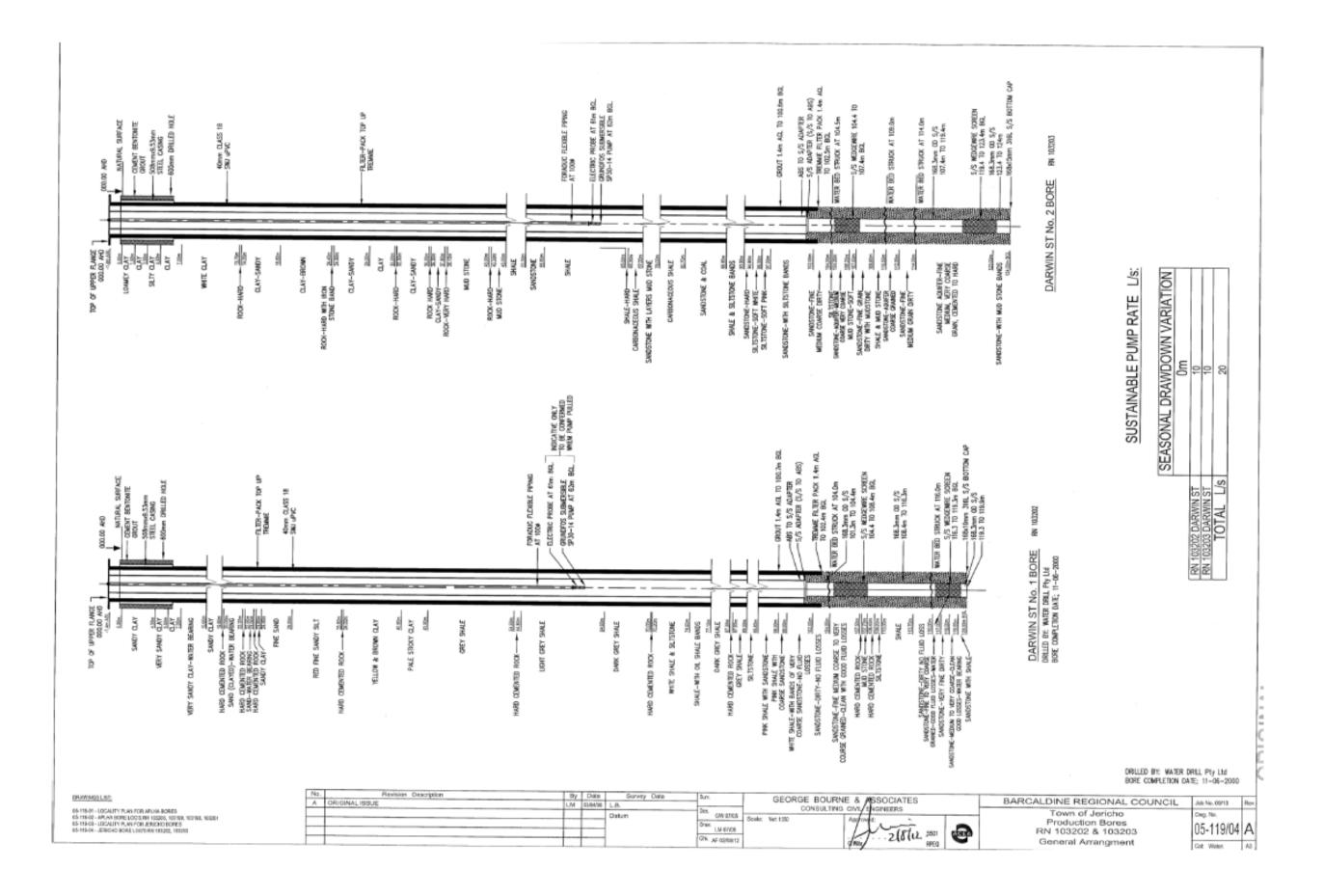
Bore Casing and Stratification Details

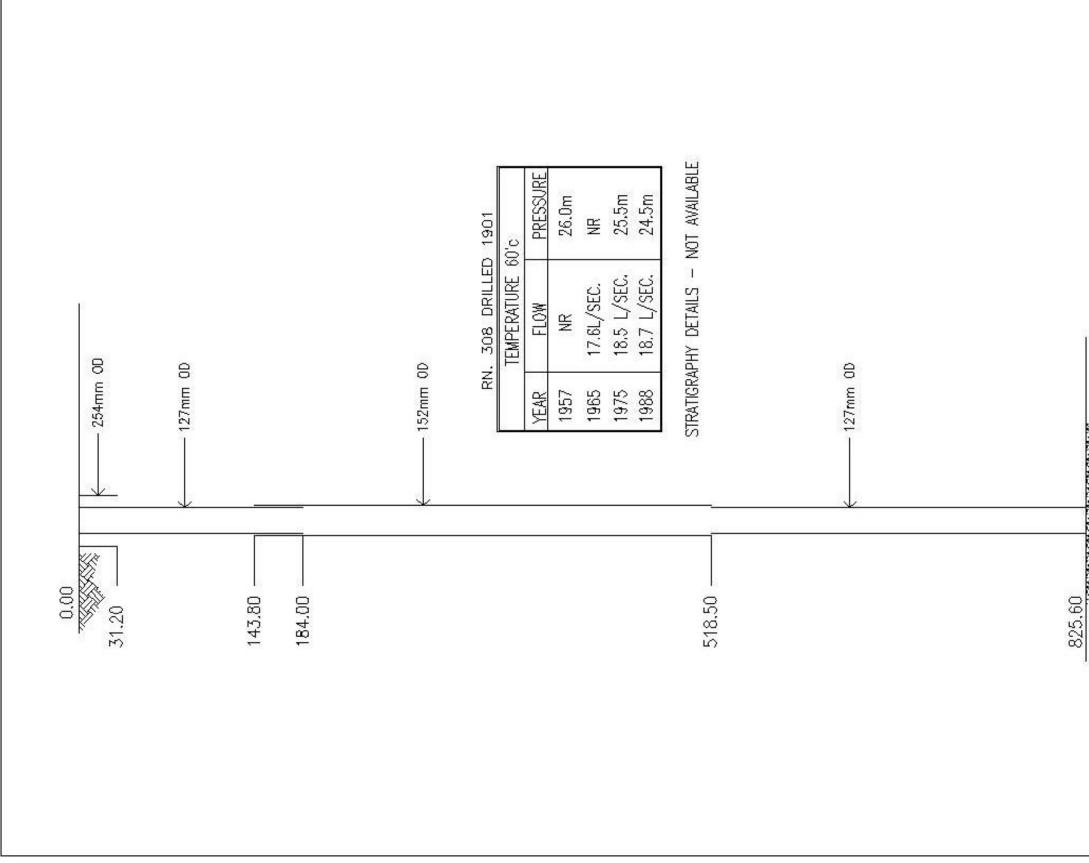


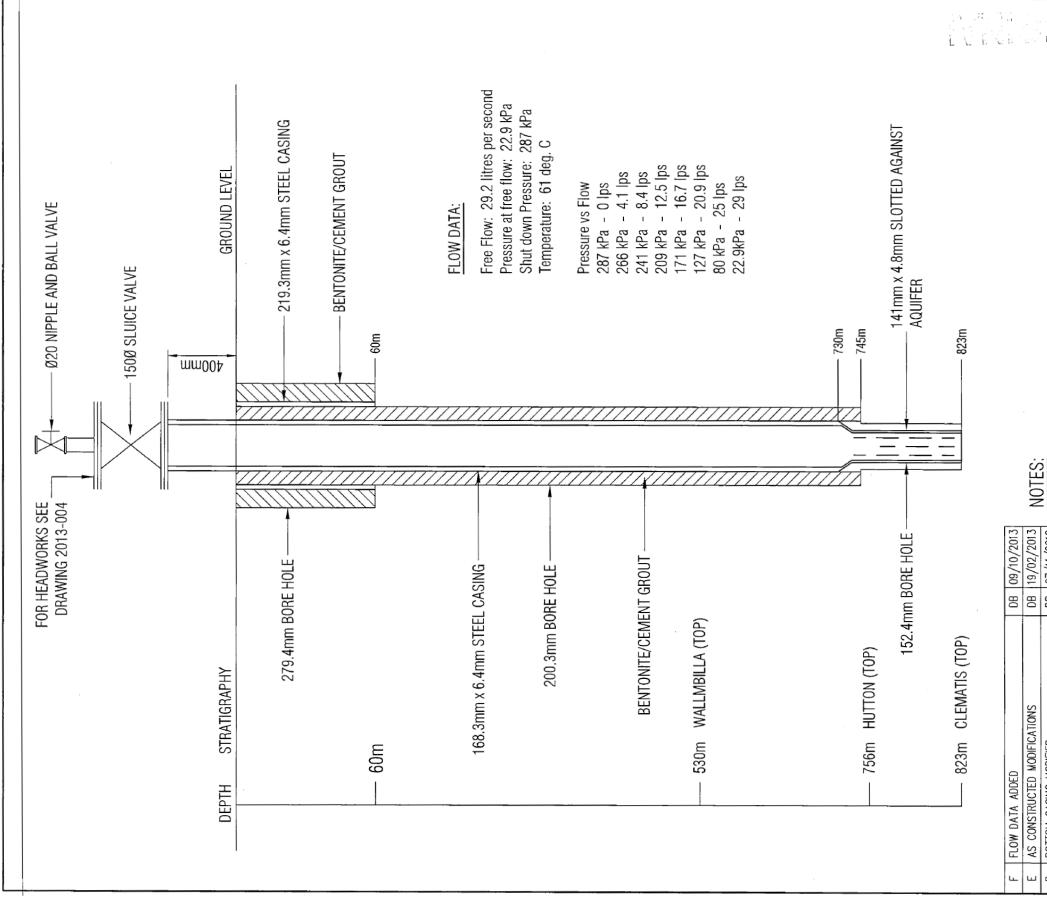
Size: Af	Dwg No.		RU-UUA	No. 1 of 1
Assoc, Dwgs;			BORE NO.1	LED 1933
: ASSOCIATES ENGINEERS			ARAMAC TOWN BORE NO.1	RN. 7121 DRILLED 1933
BOURNE &	100		ACEA)
GEORGE BOURNE CONSULTING CIVIL	Approved:	Ĩ	Scale:	
-	Sun.	Des.	Drw. H A 04/00	Chk.




	Size: Af	Dwg No.		0.2 1 U-CUI	3 No. 1 of 1
Ŋ	Assoc. Dwgs.			BORE N(LED 198
RN 51753 DRILLED 1983	& ASSOCIATES ENGINEERS			ARAMAC TOWN BORE NO.2	RN 51753 DRILLED 1983
	BOURNE ING CIVIL	2007 - U	Ć	ACEA	C
	GEORGE BOI CONSULTING	Approved:	1	Scale: N.T.S.	
	5	Surv.	Des.	Drw. H.A 06/01	Cłk.


251


REVISION A: CHANGED DIAMETER OF HOLE FROM 200mm TO 215mm. BY M.W, 10/95. REVISION B: ADDED NOTE REGARDING GROUTING BEWTWEEN ABS CASING AND STEEL TUBING
GEORGE BOURNE & ASSOCIATES ASSOC. DWGS:
CONSULTING CIVIL ENGINEERS
BARCALDINE
PTIONAL A.B.S. CASING BORE ARRANGEMENT227-95 B
FOR BARCALDINE TOWN BORE No. 69904 Nol of 1



170199

		MUTTABU	IRRA TOWN BORE		
EOR	GEORGE CONSUL	ORGE BOURNE CONSULTING CIVIL	& ASSOCIATES ENGINEERS	Assoc. Dwgs.	Size: A4
Appr	Approved:	- 1960 			Dwg No.
Scale:	L.	ACEA	MUTTABURRA TOWN BORE	OWN BORE	00-62
)	RN. 308 DRILLED 1901	LED 1901	No. 1 of 1

Ω	BOTTOM CASING MODIFIED	DB 07/11/2012			í L
ပ	ADDED STRATIGRAPHY	ZR 18/09/2012	1. FOR STRATA DETAIL SEE BORE LOG No. 096567 DATED 23/01/2013.	DATED 23/01/2013.	: () (
œ	DEPTHS AMENDED	WW 10/05/2010	2	04.	- 7 72
A	ORIGINAL ISSUE	WW 16/07/2009	i		
No.	Revision Description	By Date			
G	FORGE BOURNE & ASS	OCIATES	GEORGE BOURNE & ASSOCIATES BARCALDINE REGIONAL COUNCIL JOD NO.	Job No. 01/13 Rev.	S Rev.
	Consulting Civil Engineers	ers	TOWN OF MITTARIIRRA	Drawing No.	
Sc	Scale: Approved:		ARTESIAN RORF No 2		L
ž	NOT TO 1513	13 ACEA	CONSTRUCTION DESIGN	10/000-6007	<u> </u>
<u></u>	SCALE SLJ Bourne RPEQ			CATEGORY: WATER A4	R A4

Appendix E

Local Disaster Management Plan Contact Details³⁰

³⁰ List refers to contacts contained within Barcaldine RC LGDMP. For current list refer to the online version of this document.

LDMG Members

Organisation/Role	Name & Address	Phone	Email and Fax
Barcaldine Regional	Cr Rob Chandler 72 Box Street,	4651 5622	chandler@barcaldinerc.qld.gov.au
Council - Chair	Barcaldine	0427 512 314	4651 1778
Barcaldine Regional	Cr Jenni Gray	4658 7145	gray@barcaldinerc.qld.gov.au
Council - Deputy Chair	"Abrach" Longreach	0428 587 145	4658 7237
Barcaldine Regional	Brett Walsh	4651 5626	desh@barcaldinerc.qld.gov.au
Council - Local Disaster	57 Yew Street, Barcaldine	0429 496 570	4651 1778
Coordinator			
QFRS - Rural	Larry Lewis	4651 1190	larry.lewis@dcs.qld.gov.au
	Ash Street, Barcaldine	0427 870 433	4651 1803
Barcaldine Police - OIC	Sgt Barcaldine Police	4651 1322	Misson.TimotyJ@police.qld.gov.au
	Ash Street, Barcaldine		
Barcaldine Regional	Rick Rolfe	4651 5600	meng@barcaldinerc.qld.gov.au
Council - Manager,	71 Ash Street, Barcaldine	0427 511 087	4651 1778
Engineering Services			
Emergency Management	Zoy Green	4658 1308	zgreen@emergency.qld.gov.au
Queensland	Longreach Airport,	0427 797 392	
	Longreach		

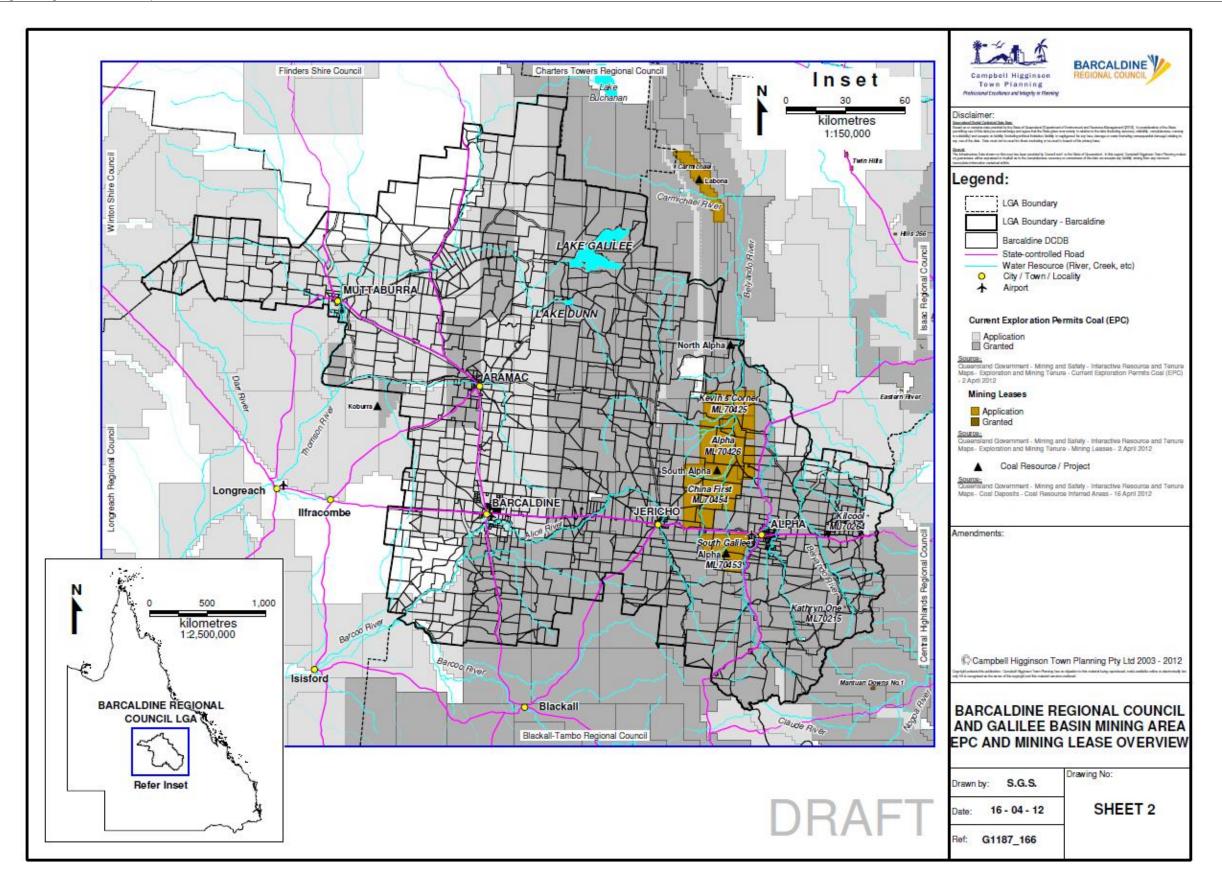
Barcaldine

Organisation/Role	Name & Address	Phone	Email and Fax
Barcaldine Regional	Cr Garry Bettiens	4651 1013	garry@capplumbing.qld.gov.au
Council - Chair Sub Group		0428 719 754	
Barcaldine Regional	Brett Walsh	4651 5600	brettw@barcaldinerc.qld.gov.au
Council - Executive	71 Ash Street	0427 511 748	4651 1778
Manager	Barcaldine		
QFRS Captain	Athol Hite	4651 1841	
Barcaldine Station	20 Pine Street,		
	Barcaldine		
Queensland Police	Officer in Charge	4651 1322	Misson.TimothyJ@police.qld.gov.au
Services	Barcaldine Station		
	Ash Street, Barcaldine		
Queensland Ambulance	Officer in Charge	4651 2304	
Services	Barcaldine Station		
	Ash Street, Barcaldine		
Barcaldine Group - SES	Eric Hindmarsh	4651 1436	
	Willow Street, Barcaldine		
Barcaldine Hospital	DON	4650 4000	

Aramac/ Muttaburra

Organisation/Role	Name & Address	Phone	Email and Fax
Barcaldine Regional	Cr Jenni Gray	4658 7145	gray@barc.qld.gov.au
Council - Deputy Chair		0427 587 145	
Sub Group			
Aramac Executive	lan Kuhn	4651 3311	emaramac@barc.qld.gov.au
Manager	35 Gordon Street	0419 661 031	4651 3156
	Aramac		
QFRS Captain, Aramac	Officer in Charge Doug Churchill	4651 3170	
Station			
Muttaburra Rural Fire	First Officer	0427 587 191	
Brigade	Rodney Little		
QAS Aramac Station	Officer in Charge Adam Russell	000	
Muttaburra	DON		
PHC/Ambulance			
Aramac Police Station	David Thompson	4651 3120	thompson.david@police.qld.gov.au
Muttaburra Police Station	Officer in Charge		Smith.LindaM@police.qld.gov.au
Aramac Group - SES	Doug Churchill	132 500 0428 725 017	
Aramac Hospital	DON Faye McLure	4652 9000	
Aramac Hospital	Faye McLure	4652 9000	

Alpha/Jericho


Organisation/Role	Name & Address	Phone	Email and Fax
Barcaldine Regional	Cr Sean Dillon	4983 5083	dillon@barc.qld.gov.au
Council - Deputy Chair		0427 700 958	
Sub Group			
Alpha Executive Manager	ТВА	4985 1166	emalpha@barc.qld.gov.au
	43 Dryden Street, Alpha	0429 851 166	
QFRS Captain, Alpha	John Mahon	4985 1624	
Jericho Rural Fire	First Officer Greg Pearce	4651 4237	
QAS / Alpha Hospital	DON-Alpha Hospital Leona Bowers	4809 7000	
Alpha Police Station	Officer in Charge Mick Lingard	07 4985 1200	lingard.michaelJ@police.qld.gov.au
Jericho Police Station	Officer in Charge Joel Williams	4651 4120	
Alpha Group - SES	Local Controller Narelle Trilford	0427 745 082	

Supporting Agencies

Organisation/Role	Name & Address	Phone	Email and Fax
Power	Ergon Energy	13 10 46	
	Myall Street		
	Barcaldine		
Communications	Telstra Beech Street, Barcaldine	1800 331 286	
Health	Royal Flying Doctor	1300697337	
	Service		
	137b Eagle Street,		
	Longreach		
Local Media	Longreach Leader	4658 3855	advertising@longreachleader.com.a u
	124 Magpie Lane,		
	Longreach		4658 2396
	ABC	4658 4011	westqld@yourabc.net.au
	Duck Street, Longreach		4658 4099
	4LG Gallah Street, Longreach	4658 3333	
	West FM Gallah Street, Longreach		
Rebel FM		5541 4222	info@rebelfm.com.au

Appendix F

Existing Mining Leases and Exploration Areas

